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• Concepts and mathematical models of evolutionary/coevolutionary games
• Players and strategies
• Interaction networks: Evolutionary graph theory
• Strategies and configurations

• Games and co-evolutionary dynamics
• Parameterization of the payoff matrix and payoff space
• Social dilemma games: prisoner's dilemma (PD), snowdrift (SD), 

stag-hunt (SH), harmony (H) games
• Nash equilibria and evolutionary stable strategies (ESS)
• Dilemma strength and universal scaling
• Frequency dependence
• Fixation properties: fixation probabilities and fixation times
• Structure coefficients

• Computational issues
• Replicator dynamics
• Models for updating strategies and interaction networks
• Landscape view on coevolutionary games 

• Open questions and research topics

Content
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Biologically: 
Evolution acts on population of individuals

Building blocks of evolution 

Mutation  Differences in Fitness  Selection  Reproduction

Competitions  Cooperation

Richard Dawkins
The selfish gene (1976)
“It can be selfish to be altruistic”
OR “It can be altruistic to be selfish…”

What is evolution?

Evolutionary and Coevolutionary Games

Images: https://daybreaksdevotions.wordpress.com/
https://phys.org/
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Evolutionary and Coevolutionary Games

Address a long-standing and fundamental problem in Darwinian evolution

Two seemingly contradictory observations:

One: Population of reproducing individuals  phenotypic differences 
selective pressure  survival and reproduction of best adapted (a.k.a. 
fittest)  competition

Two: Wide-spread cooperative and even altruistic behavior between 
individuals (and groups of individuals and even species) 

Q: How can selection favor fitter individual while cooperation levels fitness?

(Co)-evolutionary games: mathematical models for discussing

Q: Whether, when and under what circumstances is cooperation more 
advantageous than competition?  

Why evolutionary and coevolutionary games?
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Evolutionary and Coevolutionary Games

Population of players

Each player       may use one of two strategies 

Player        interacting with player  
gives payoff according to a payoff matrix

Numerical values and order yield
particular examples of social dilemma games

Snowdrift game (SD)
Prisoner’s dilemma game (PD)
Stag hunt (trust dilemma) (SH)


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Evolutionary games
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Defecting
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Temptation
Sucker payoff
Punishment
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PSRT 
SPRT 
SPTR 
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Evolutionary and Coevolutionary Games

We need three entities to specify an evolutionary game

Who-gets-what: Payoff matrix defining the payoff for each 
strategy

Who-plays-whom: Interaction network defining with whom 
any player interacts (for more than 2 players)

Who-plays-what: Strategy vector defining the strategy of 
each player  Configuration of the game

Vary all three of these entities

Evolutionary game dynamics
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Evolutionary and Coevolutionary Games: Some early history

(On the Theory of Games) Math. Ann. 100: 295–320 (1928)

1982



Hendrik Richter
HTWK Leipzig, F EIT, MSR

Concepts and recent results in 
coevolutionary games

8

Evolutionary and Coevolutionary Games

Evolutionary game dynamics: What are we interested in?

Hierarchy of game dynamics:

Game playing  each player 
uses its strategy 
plays scheduled coplayers
receives payoff 

Convert payoff to fitness Intensity of selection
(= influence of a single game on total)

Weak selection

Play again  no game dynamics

A players changes strategy  evolutionary game dynamics

Players change interaction network  coevolutionary game dynamics

ip

ii pf 1 

1
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Evolutionary and Coevolutionary Games

Evolutionary game dynamics: What are we interested in?

Hierarchy of asymptotic game dynamics

- Which players has how much payoff (or fitness) after a certain time?
Iterated games, repeated games  Player deliberately selects strategy 
(for instance Tit-for-Tat, Win-stay-Lose-switch)
- Classical evolutionary game theory, 1980s (John Maynard Smith, Robert 
Axelrod, William D. Hamilton)

- How are strategies distributed over players after a certain time?
- What is the probability that all players settle on one strategy? 
- Is there a fixation of strategy? 
- Under what circumstance is the fixated strategy ‘Cooperation’? 
- How to promote the emergence of ‘Cooperation’ or ‘Evolution of Cooperation’?
1990s and ongoing (Martin Nowak, Chris Hauert, Hisashi Ohtsuki)

- How does the structure of the interaction network interfere with fixation?
- Network structure is object to evolve  Current topic (and of the future…) 
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Evolutionary and Coevolutionary Games

Who-gets-what: Payoff matrix defining the payoff for each 
strategy

Who-plays-whom: Interaction network defining with whom 
any player interacts (for more than 2 players)

Who-plays-what: Strategy vector defining the strategy of 
each player  Configuration of the game

Evolutionary game dynamics
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Evolutionary and Coevolutionary Games: Payoff matrix

Classification of 2-strategy-2-player games with respect to game-theoretical difference

How many Nash equilibria there are? What is the type of the Nash equilibria?
Nash equilibria (NE) and evolutionary stable strategies (ESS) 

NE =  best response to another player’s strategy (no other strategy yields higher 
payoff

ESS = strategy that cannot be invaded by any alternative (yet initially rare) strategy

NE not necessarily equal ESS  

2-strategy game  4D parameter space

2-player game





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Evolutionary and Coevolutionary Games: Payoff matrix

2-strategy game  4D parameter space

2-player game

SPTR 

PTSR 

Numerical values and order 
yield particular examples of social dilemma 
games

Snowdrift game (SD) (also chicken or 
hawk-dove)

Prisoner’s dilemma game (PD)

Stag hunt game (SH)

Harmony game (H) 

 PTSR ,,,

PSRT 

SPRT 
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2-player games: Snowdrift game (also chicken or hawk-dove)

2-strategy game  4D parameter space

Snowdrift game (also chicken or hawk dove)

The game: A snowdrift blocks a road. Two drivers
are on opposite sides of the block. Each can either 
start shovel away snow to clear the path or wait. 
Highest reward: Let opponent do all work. Then:
Do it together. Then: Do it yourself. Last: Both do 
nothing.

Order of parameter

Nash equilibria: three polymorphic equilibria 
 either players choose opposite strategies (cooperate vs. defect, or 

defect vs. cooperate) or 
 randomly switch between cooperating and defecting 









PT
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jC jD
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iD

PSRT  Image: James Pollard (1792-1867), „A mail coach in snow drift“
www.artwarefineart.com
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2-player games: Prisoner’s dilemma game 

2-strategy game  4D parameter space

Prisoner’s dilemma

The game: Two people are arrested. Prosecutor can charge 
both with small crime but lacks evidence to convince both of 
larger crimes. Deal to both: Betray the other and go free. 
Highest reward: Betray, while the other does not. Then: Both 
not betraying. Then: Both betraying. Last: Not betraying, 
while the other does.  

Order of parameter

Nash equilibria: monomorphic  all players defect





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SPRT 
Image: Ilya Repin (1844-1930) „Arrest of a propagandist“ 
www.imrussia.org
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2-player games: Stag hunt game (coordination game, trust dilemma)

2-strategy game  4D parameter space

Stag hunt (coordination game or trust dilemma)

The game: (Jean-Jacques Rousseau)
Two people go on a hunt. Each can hunt a stag (together) or 
a hare (each by himself).  Highest reward: Hunt together a 
stag. Then: Each hunts a hare. Last: Go stag hunting alone.

Order of parameter

Nash equilibria: two pure Nash equilibria, bi-stable 
 either all players cooperate, or 
 all players defect

Image: Frans Snyders (1579-1657) „Deer hunting“, www.wikiart.org

SPTR 
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2-player games: Harmony game

2-strategy game  4D parameter space

Harmony game

The game: No formal description as no conflict.

Order of parameter

Nash equilibria: monomorphic  all players cooperate


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PTSR 
Image: Pieter Bruegel (1525-1569) „Preparation of the flower beds“ 
www.pieter-bruegel-the-elder.org/
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2-player games: General remark

2-strategy game  4D parameter space









PT

SR
jC jD

iC

iDPD prisoner‘s dilemma
SD snow drift (chicken, hawk-dove)
SH stag hunt
H harmony

Conflict between individual and group
(what is best for me vs. what is best for group)

Typical 2x2 games
More games with specific

Evolutionary games: More than 2 players

 PTSR ,,,
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Evolutionary and Coevolutionary Games: Payoff matrix

Social dilemmas and Nash equilibria

Always cooperate

Always defect

Mix both

S

T









PT

SRiC

iD

jC jD Reward
Temptation
Sucker payoff
Punishment

PD prisoner‘s dilemma
SD snow drift (chicken, hawk-dove)
SH stag hunt
H harmony

SD

PD

H

SH
10 2

1

1

0

RTDg 

SPDr 

Rescale
gD

1

1

0

rD
01 1

H

PD

SH

SD

gamble intending

risk-averting












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DPR

g

riC

iD

jC jD

Dilemma strength
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Rescaling of payoff matrices (Wang et al., 2015)









PT

SRiC

iD

jC jD












PuPRR

vPRPR

)(

)(iC

iD

jC jD

PR

RT
u





PR

SP
v




 PR 

11 










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 PTSR ,,, Different orders
Different social dilemmas

Traversing a 2D parameter space
with relevant dilemmas
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Evolutionary and Coevolutionary Games: Payoff matrix

Always cooperate

Always defect

Mix both

Fixation properties do not scale to R and P

gD

1

1

0

rD
01 1

H

PD

SH

SD

Wang et al. (2015)
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Evolutionary and Coevolutionary Games

For payoff matrix, strategy for each player and interaction network fixed 
 payoff distribution always the same

Make the game dynamic:  update strategies 
(evolutionary game)
replication and replicator rules

 update network of interaction
(coevolutionary game)

Strategy updating: Intensively researched field in evolutionary games

Strategy updating: stochastic process with probabilities depending on 
fitness (Moran process)

Network models and updating: evolutionary graph theory 

Coevolutionary game dynamics
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Evolutionary and Coevolutionary Games

Who-gets-what: Payoff matrix defining the payoff for each 
strategy

Who-plays-whom: Interaction network defining with whom 
any player interacts (for more than 2 players)

Who-plays-what: Strategy vector defining the strategy of 
each player  Configuration of the game

Evolutionary game dynamics
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Population of       players: who-plays-whom (who is coplayer to whom) 
 Network of interaction

Evolutionary graph theory (Lieberman et al.,2005)
Every player  vertex of a graph
Two players interacting  edge between the player vertices

Two Examples:           players 
all playing all others player 1 vs. (2&3); player 3 vs. (1&4) 
(but no self-play) player 2 vs. (1&4); player 4 vs. (2&3)

Evolutionary and Coevolutionary Games: Interaction network

Evolutionary graph theory


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Complete network of interaction

Adjacency matrix
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Degree of a vertex = number of edges = number of coplayers

Same degree for all vertices = regular graph = number of coplayers same 

Adjacency matrix symmetric = undirected graph = players mutually interact

Main diagonal zeros = no self-edges = no self-play

Complete matrix = complete graph = well-mixed game 

Structured matrix = regular (or any) graph = structured population

Evolutionary and Coevolutionary Games: Interaction network

Evolutionary graph theory: graph-theoretical concepts and implications
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Interaction network  interaction graph  instance of an Erdös-Rényi graph

Any d-regular graph on N vertices  interaction network with N players and
d coplayer 

Any d-regular graph on N vertices  dN/2 edges  dN even

N=5, d=2 N=5, d=3   N=5,d=4

Numerical experiments with N even
Numerical experiments vary over N and d

1

4

2

3

Evolutionary and Coevolutionary Games: Interaction network

d-regular graphs on N vertices: computational models of interaction networks 

5

1

4

2

3

5

1

4

2

3

5



Hendrik Richter
HTWK Leipzig, F EIT, MSR

Concepts and recent results in 
coevolutionary games

26

Evolutionary and Coevolutionary Games: Interaction network

Recently, efficient algorithms to generate such graphs (Bayati et al.,2010) 
Number of different 2-regular graphs by iteration

d-regular graphs on N vertices: computational models of interaction networks 
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Evolutionary and Coevolutionary Games: Interaction network

No formula known to calculate the number of d-regular graphs on N vertices

Asymptotic approximation for dN even and , Wormald, 1999 

Hugh number of different graphs for sufficient large d and N

 Numerical experiments may take into account only a tiny subset

d-regular graphs on N vertices: computational models of interaction networks 
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Evolutionary and Coevolutionary Games: Interaction network

Evolutionary graph theory: generalizes spatial games
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Spatial games on a lattice grid: Coplayers are 
spatial neighbors (edges overlapping)

7

i jplayer coplayer

Von Neumann neighborhood

4-regular graph over 9 
vertices
General: Specific 4-regular 
graph on N vertices

Moore neighborhood

5 6

8 9

1

4

2 3

7

8-regular graph over 9 
vertices
General: Specific 8-regular 
graph on N vertices

Complete graph
 well-mixed game

  0,1,  iiijijI aaaA

Nowak & May, 1992
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Evolutionary and Coevolutionary Games

Who-gets-what: Payoff matrix defining the payoff for each 
strategy

Who-plays-whom: Interaction network defining with whom 
any player interacts (for more than 2 players)

Who-plays-what: Strategy vector defining the strategy of 
each player  Configuration of the game

Evolutionary game dynamics
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Fundamental elements in evolution of evolutionary games

1

4 3

5

Game Dynamics and Fixation Properties: Strategy vector

1

4 3

5

1

4 3

5

Mutation
= there is 
novelty

Selection
= growth is 
not equal
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2 strategies, red and blue, one change of strategy once a time

1

4 3

5

Game Dynamics and Fixation Properties: Strategy vector

1

4 3

5

1

4 3

5

1

4 3

5

1

4 3

5

1

4 3

5

Fixation: Reach one of the absorbing states of 
a Markov chain

Two scenarios:
• Change of strategy random and equal for all

(Constant selection)
• Change of strategy random and depending 

on fitness (frequency-dependent selection)

Fixation 

Extinction
Fixation 

Extinction
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Fixation probabilities

Game Dynamics and Fixation Properties: Strategy vector

Constant selection: individual payoff (and individual fitness) only depends 
on own strategy

Neutral evolution: fitness     =   fitness

Fitness dependent evolution: fitness       
fitness 

N

1


1f
1f

Nblue f

f

/11

/11







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Fixation probabilities

Game Dynamics and Fixation Properties: Strategy vector

Frequency-dependent selection (Frequency dependence):
individual payoff (and individual fitness) depends on own strategy 

AND 
who the coplayers of the individual are  network of interaction

AND 
the strategies of the coplayers  strategy vector  configuration


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Frequency dependence and configurations

Game Dynamics and Fixation Properties: Strategy vector

• Evolution acts on individuals (more precise on properties of individuals)
• Co-evolutionary games  players with the property strategies

• But: Game dynamics not understandable by the strategy of a player alone
• Need all strategies of all interacting players  frequency-dependence

• Configurations: Alternative to player-centered view
• Enumerates all choices that players have

N players, 2 strategies each  N ...321

   0,1,  iii DC
N2
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Configuration model

Strategies in a population on N players:

Game configuration Coplayer configuration
Describes strategies of all players Describes strategies of the coplayers 
(= the game as a whole) (= the game from the perspective of

each player)
Example 

For player 1

For player 2
Players 1 & 4 defect
Players 2 & 3 cooperate  direct calculation of payoffs

 N ...321

   0,1,  iii DC

  )0110(4321  
4N 1624    )110(432   co

  )110(431   co
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Configurations, local frequencies and payoff: Well-mixed 

Local frequencies:

Player i  strategy 1 (cooperating)

Player i  strategy 0 (defecting)

Payoff depends on the frequency of strategies among coplayers

Well-mixed population  every player interacts with all other players (d=N-1)

 110co

)()()( 011
coicoicoi SRp  

)()()( 010
coicoicoi PTp  

3/2)110(1  3/1)110(0 

 110co

 100co

3/)2()110(1 SRpi 

3/)2()100(1 SRpi 

3/)2()110(0 PTpi 

3/)2()110(0 PTpi 
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
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Example: N = 4 players, d = 3 coplayers (well-mixed) 
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Configurations, local frequencies and payoff: Structured 

Structured population: Interaction network structures who-plays-whom

Local frequencies depend on adjacency matrix

Configuration (coplayers’ strategies for all players) 
Interaction network (actually a coplayer ?) 

Example: Player 1 + first row of adjacency matrix 

Payoff depends on configuration + interaction network

2,4  dN

 110co

)110(2/1)110( 0
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1
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Example: N = 4 players, d = 2 coplayers (structured)
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Properties of configuration model of (co)-evolutionary games 

• Local frequencies can be calculated for 
• all configurations
• all players
• a given network of interaction (well-mixed  complete graph)

(structured  any connected graph)

• Calculating local frequencies is bit-counting (Hamming weight)  linear time 
complexity

• Payoff is rescaled local frequencies

• Payoff over varying payoff matrix  linear parametrization

• Shows clearly frequency-dependence (Hamming weight of configuration)

Local frequencies: Configuration + interaction network

)()()( 011
coicoicoi SRp  

)()()( 010
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 NIIII ,,, 21 

Game playing and updating strategies

Game Dynamics and Fixation Properties: Strategy vector

Population of players

Players choose a strategy

Collect payoff 

Update strategy
depending on payoff
(replicator rules)

Q: Given a payoff matrix, replicator rule and an initial configuration of strategies, 
what is the probability that all players end up with the same strategy?

For instance:
fixation probability of cooperation

   0,1,)(  iii DCk









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   10,01,)1(  iiiii CDDCk
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Replicator dynamics and replicator rules

Game Dynamics and Fixation Properties: Strategy vector

Players may discard current strategy and adopt neighbor’s strategy

Decision should depend on fitness  success (or failure) of current strategy

Common schemes
• Death-Birth (DB)
• Birth-Death (BD)
• Pairwise comparison (PC)
• Imitation (IM) 

   10,01,)1(  iiiii CDDCk
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Death-birth (DB) and birth-death (BD) strategy updating

Death-birth (DB)

Choose a player’s strategy to be replaced 
at random with probability proportional to 
inverse of fitness (death)

Choose the strategy that replaces at 
random amongst the remaining players 
(birth)

low fitness 

Birth-death (BD)

Choose a player’s strategy to replaced 
another at random with probability 
proportional to fitness (birth)

Choose the strategy that is replaced at 
random amongst the remaining players 
(death)

high fitness

1

4

2

3

5

1

4

2

3

5

Assumption: Replacement network = interaction network
If not: Breaking symmetry between interaction and replacement (Ohtsuki et al., 2007)
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Pairwise comparison (PC) and imitation (IM) strategy updating

Pairwise comparison (PC)

Choose a player’s strategy potentially to 
be replaced uniformly at random
Choose a potential replacer among the 
neighbors uniformly at random.

Replace (or preserve) strategy with 
probability

compare fitness 

Imitation (IM)

Choose a player’s strategy to replaced 
uniformly at random

Choose the strategy that replaces amongst 
the neighboring players and the player 
itself proportional to fitness

high fitness

1

4

2

3

5

)exp(1

1
)(

25
52 ff

p

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25 ff 

1

4

2

3

5



Hendrik Richter
HTWK Leipzig, F EIT, MSR

Concepts and recent results in 
coevolutionary games

45

Fixation probabilities and fixation times for single cooperators (defectors)

Game Dynamics and Fixation Properties: Strategy vector

Fixation probability of cooperation

Fixation probability of defection

absorbing configurations

Generally: both depend on payoff matrix and are not equal but vary over replicator 
rules and interaction networks

Fixation probability depending on
initial player?  

Well-mixed population (complete interaction network)  no
Structured populations  Not for a single cooperator (and defector) but any 

other configuration

 0...1000)0(   1...1111)( 

 1..0111)0(   0...0000)( 

C

D

 0...1000)0( 

 0...0100)0( 
 1...1111)( 
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Fixation probabilities and fixation times

Game Dynamics and Fixation Properties: Strategy vector

average time for
Fixation time of cooperation:

Fixation time of defection:

Computational issues: vary (or average) over different start configurations

configurations over

Start configurations get rare  final configurations (absorbing configurations) 
same

C

D

 0...1000)0(   1...1111)( C

 1..0111)0(   0...0000)( D

N2  N1,0 0
2


N

N
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Fixation properties 
(probabilities and times) over 
N and d

Conclusions about 
coevolutionary game 
dynamics:

Properties vary over interaction 
networks

No fixation for PD BD

Fixation properties: Example

red BD
green DB 
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Fixation probabilities and fixation times: Bad news!

Game Dynamics and Fixation Properties: Strategy vector

Calculating fixation probabilities and fixation times in structured populations

 Computational intractable in general settings
 Computational cost increases exponential with players and coplayers

BUT: If a game setting favors fixation of a strategy can be answered for

- Random change of strategy equal for all
- Random change of strategy depending on fitness for single cooperator 
(and single defector)
- Weak selection and any configuration
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Game setting favors fixation of a strategy

Game Dynamics and Fixation Properties: Strategy vector

Setting: Payoff matrix Network of interaction Configuration

d-regular graph on N vertices (N players, d coplayers each)

Strategy      is favored over        

Structure coefficient
Q: When does the structure coefficient not depend on configuration and network?
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
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Generic structure coefficient, d-regular graph on N vertices

Game Dynamics and Fixation Properties: Strategy vector

For a single cooperator (and a single defector), (Tarnita et al., 2009)

Well-mixed (d=N-1)

Cycle (d=2)

Structured (N>>d)
(and DB updating)

Any N and d 

N
N 2

N
N 83 

Nd
dNd

)1(
4)1(


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1
1

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2

N
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Generic structure coefficient: example

Game Dynamics and Fixation Properties: Strategy vector

Evolutionary games on a lattice: DB updating, a single cooperator at initial 
configuration
Q: Is fixation of cooperation favored?
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Generic structure coefficient: example lattice N=9, d=4

Game Dynamics and Fixation Properties: Strategy vector

Evolutionary games on a lattice: DB updating, a single cooperator at initial 
configuration
Q: Is fixation of cooperation favored?

vuNd
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Structure coefficients: Any configuration

Structure coefficients can be defined for any configurations and any interaction 
network described by regular graphs (Chen et al., 2016)

Structure coefficients vary over configurations with more than one cooperator (or 
more than one defector)

Structure coefficients vary over interaction networks

Question of favored strategy more complicated to answer

Initial placement of cooperator to induce fixation properties becomes a design 
problem
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How to define landscapes for coevolutionary games?

Fitness landscape view 

Relationship between genotype, phenotype and fitness
(i.e. all solutions, candidate solutions, solution quality)

Geometric interpretation: 
2D fitness landscape metaphor
(valleys, peaks, ridges, plateaus
but also: lakes and flows)

Beyond the metaphor: Computational Tool

Potentials for (evolutionary) dynamics

(i.e. driving forces behind evolutionary processes)
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 fnXS ,,

Configuration 
space

Neighborhood 
structure

Fitness 
function

Produces locations

Unordered list of configurations 
What is next to what 
in configuration space?
Ordering the list

Quality information
for configuration space

Gives elevation (or height) 
to locations

How to define landscapes for coevolutionary games?

Mathematical description of fitness landscape 
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Configuration space for coevolutionary games:

At least two possibilities: Players and strategies

Players

Configuration: all players

Neighbors: players and coplayers

Fitness: payoff (or derived quantities)

But: Payoff frequency-dependent

Changing network of interaction
 Changing neighborhood structure Nowak & May, 1992

Coevolutionary games:
 Dynamic fitness + changing neighborhood = hard

How to define landscapes for coevolutionary games?
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Configuration space for coevolutionary games:

At least two possibilities

Strategies

Configuration: strategy distribution of all players

Neighbors: strategy distribution after one strategy updating (Hamming distance 1)

Fitness: payoff (or derived quantities), static and unique for a given network

Example: players, two strategies (C=1,D=0)  elements

player 2&4 cooperate, 1&3 defect 

player 1 changes strategy

How to define landscapes for coevolutionary games?

4N 1624 

   01014321  

   11014321  

NX 2,  
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From strategy landscapes to game landscapes 

Strategy landscapes are building blocks for game landscapes
for a given strategy updating process

 Take death and birth probabilities according to the transition probabilities for BD 
and DB updating (Pattni et al, 2015)

 Decompose strategy landscape and summarize probabilities over the strategy 
landscape

 Obtain game landscape for BD and DB updating process (strategy updating breaks 
symmetry of the strategy landscapes) (Richter, 2017)

Dynamic landscapes for coevolutionary games
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Coevolutionary games complete by three entities

Payoff matrix
Strategy vector  configuration
Interaction network 

Payoff matrix   universal scaling, Wang et al. (2015), convenient way to 
study relevant game-theoretical settings in a 2D parameter space

Strategy vector  configuration, Chen et al. (2016), describes evolutionary 
game complete (all possible combinations of strategies)
BUT: computational issues (in principle, intractable for larger N)  

How many of the N players are cooperators (or defectors)? 
Configurations  Hamming weight of 

How many of the have 
(2 cooperators)?

N2

    01014321   2)()(   hwc

Summary and research questions
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Strategy vector  configuration

How many of the have 
(2 cooperators)?

General: Binomial coefficients                  Pascal triangle

1 cooperator  linear
2 cooperators  quadratic
3 cooperators  cubic

cooperators (N large)  exponential

Computational complexity not for all configurations
Initial placement of cooperators  not generally intractable
Design: Optimal initial configuration  fixation  promotion of cooperation

Summary and research questions
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Interaction network

Substantial amount of results for regular graphs (including complete graphs 
well-mixed case, and cycles)

also for special graphs structures (stars, comets)

based on structure coefficients

But: How many different interaction networks there are?
Not answerable exactly even for d-regular graphs on N vertices

Asymptotic approximation:

Grows faster than configurations

Design: Optimal interaction network  fixation  promotion of cooperation

Summary and research questions

 Nod    NdNOL N
d  ,
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Interaction network

Research question: Extend to general graph structure

Recent work, Allen et al. (2017), calculate fixation 
properties for any network
Coalescences times (meeting times of random walks on the interaction graph)
 Structure coefficient for any graph and a single cooperator
 Calculation in polynomial time
 Open questions: 

 extend to any configuration (more than one cooperator)
 extend to beyond weak selection,  

Summary and research questions

ii pf 1
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Research directions

Co-evolutionary game dynamics

Conditions for obtaining certain fixation properties  how to promote 
(or suppress) cooperation

Beyond single cooperators (single defectors)

Beyond weak selection

Interplay between strategies (configurations) and interaction network
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Thank you ! Questions ?

Hendrik Richter

HTWK Leipzig University of Applied Sciences
Leipzig, Germany

hendrik.richter@htwk-leipzig
http://www.eit.htwk-leipzig.de/~richter
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Evolutionary and Coevolutionary Games

Strategy updating: birth-death updating (BD)
death-birth updating (DB)

 No details here, but transition probabilities for strategies can be 
calculated (Pattni et al.,2015)

Network of interaction updating: Assume that number of coplayers for 
each player the same and constant

Network of interaction  d-regular graph
Instances of network of interaction  instance of a random d-regular graph

Updating strategy and network of interaction
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Calculating BD and DB game landscapes
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 fnXS ,,

Configuration 
space

Neighborhood 
structure

Fitness 
function

Produces locations

Unordered list of configurations 
What is next to what 
in configuration space?
Ordering the list

Quality information
for configuration space

Gives elevation (or height) 
to locations

How to define landscapes for coevolutionary games?

Mathematical description of fitness landscape 



Hendrik Richter
HTWK Leipzig, F EIT, MSR

Concepts and recent results in 
coevolutionary games

69

Landscape measures: How likely are evolutionary paths?

Evaluation of behavior and performance of 
an evolutionary algorithm
 Landscape measures (= defining metrics)

No simple answer to how likely evolutionary paths in a certain landscape are. 

Easy More difficult
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Landscape measures: Game landscapes

Ruggedness: Correlation structure

How is it calculated?

1. Doing a random walk on the landscape and recording the heights.

2. Calculating the autocorrelation function with time lag

3. Taking the time average of the correlation length  
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Landscape measures: Game landscapes

Information content: An entropic measure

How is it calculated?

1. Doing a random walk on the landscape and recording the heights.

2. Coding fitness differences with sensitivity 

3. Calculating the probability of the occurrence of the pattern 

4. Obtaining the information content
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Landscape measures: Game landscapes

Modality: Number of (local) optima
Ruggedness: Correlation structure
Information content: An entropic measure

Defining a neighborhood structure
Hamming distance 

N neighbors

Calculating the number of local optima by enumeration

   01014321    0100,0111,0001,1101
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Landscape measures: Game landscapes

Modality: Number of (local) optima
Ruggedness: Correlation structure
Information content: An entropic measure

Degree of correlation between neighboring points in the landscape

Smooth landscape  similar fitness values  high correlation

Rugged landscape  dramatically different fitness values  low correlation

Standard procedure: Analyzing the correlation structure of a random walk 
on the landscape
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Landscape measures: Game landscapes

Modality: Number of (local) optima
Ruggedness: Correlation structure
Information content: An entropic measure

Amount of information required for describing the landscape

Accounts for diversity and distribution of landscape features as flat areas 
and optima

Entropic measure of differences in the fitness value of neighboring points

Standard procedure: Analyzing the information structure of a random walk 
on the landscape
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Landscape measures: How likely are evolutionary paths?

Features contributing to problem hardness

 Number of optima
 Distribution in search space
 Nature of the space between them

Landscape measures

 Modality
 Ruggedness
 Information content

Another question: How do these features balance each other 
in terms of problem hardness ?

Number of (local) optima
Correlation structure
An entropic measure

Compressing complex landscape features in (hopefully meaningful) numbers
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Example: N = 4 players, d = 3 coplayers (static landscape) 
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PD game

Complete network of 
interaction

Intensity of selection
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Vary the network of interaction

Instance of random d-regular graphs produces instance of the strategy landscape

Instances interpreted as a series of landscapes  dynamic landscape

Dynamic landscapes for coevolutionary games
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Example: N = 4 players, d = 2 coplayers (dynamic landscape)
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Structure and geometry of configuration space and fitness function

Search space

F
it

n
es

s 
fu

n
ct

io
n

Constraints to limit the 
feasible search space

Fitness landscape

General topology

Immediate ‘geographic’ consequences: mountains and valleys  topology
Further consequences: lakes and flows  evolutionary dynamics

 evolutionary paths
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From Poelwijk et al. 2007

What is fitness landscape? The ideas of evolutionary paths

rugged
multimodal

Smooth
single
peak

neutrality detour

How likely are the paths?
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Landscape measures: How likely are evolutionary paths?

Generally: Fitness landscape

Geometrical object with features as

 Number
 Size
 Form
 Scattering

In terms of an optimization problem

 Number of optima

 Distribution in search space
 Nature of the space between them

Easy to measure

Rather difficult to measure


