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Evolutionary and Coevolutionary Games

B What is evolution?

Biologically:
Evolution acts on population of individuals

Building blocks of evolution

www.ahutlersiockcom - 691483894

Mutation - Differences in Fitness - Selection - Reproduction

Competitions <> Cooperation

Richard Dawkins
The selfish gene (1976)
“It can be selfish to be altruistic”

Images: https://daybreaksdevotions.wordpress.com/

https://phys.org/ OR “It can be altruistic to be selfish...”
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Evolutionary and Coevolutionary Games

¥ Why evolutionary and coevolutionary games?

Address a long-standing and fundamental problem in Darwinian evolution
Two seemingly contradictory observations:

One: Population of reproducing individuals - phenotypic differences -
selective pressure - survival and reproduction of best adapted (a.k.a.

fittest) > competition

Two: Wide-spread cooperative and even altruistic behavior between
individuals (and groups of individuals and even species)

Q: How can selection favor fitter individual while cooperation levels fithess?
(Co)-evolutionary games: mathematical models for discussing

Q: Whether, when and under what circumstances is cooperation more
advantageous than competition?
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Evolutionary and Coevolutionary Games

F Evolutionary games

Population of players [ =([1,]2,...,]N)

Each player [ ; may use one of two strategies

Player I, interacting with player /
gives payoff according to a payoff matrix C (R S

Numerical values and order yield
particular examples of social dilemma games

Snowdrift game (SD)
Prisoner’s dilemma game (PD)
Stag hunt (trust dilemma) (SH)

Cooperating

Ci Di Defecting
C, D,
Reward

i Temptation
D.\T p| Suckerpayoff
! Punishment
T>R>S5>P
T>R>P>S
R>T>P>S
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Evolutionary and Coevolutionary Games

®F Evolutionary game dynamics

We need three entities to specify an evolutionary game

- Who-gets-what: Payoff matrix defining the payoff for each
strategy

- Who-plays-whom: Interaction network defining with whom
any player interacts (for more than 2 players)

- Who-plays-what: Strategy vector defining the strategy of
each player - Configuration of the game

Vary all three of these entities

$* 7% i
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Evolutionary and Coevolutionary Games: Some early history

(On the Theory of Games) Math. Ann. 100: 295-320 (1928)

Zur Theorie der Gesellschaftsspiele?).
Von

J. v. Nenmann in Berlin.

Einleitung.

1. Die Frage, deren Beantwortung die v
ist die folgende:

n Spieler, 8,, 8,, ..., 8,, spiclen ein gegebenes Gesellschafisspiel &.
Wie mup einer dieser Spieler, 8,,, spielen, um dabei ein méglichst giinstiges
Resultal zu erzielen?

Die Fragestellung ist allgemein bekannt, und es gibt wohl kaum eine
Frage des tdglichen Lebens, in die dieses Problem nicht hineinspielte;
trotzdem ist der Sinn dieser Frage kein eindeutig klarer. Denn sobald
#>1 ist (d. h. ein eigentliches Spiel vorliegt), hingt das Schicksal eines
jeden Spielers auBer von seinen eigemen Handlungen auch noch von denen
seiner Mitspieler ab; und deren Benehmen ist von genau denselben
egoistischen Motiven beherrscht, die wir beim ersten Spieler bestimmen
mdchten, Man fithlt, daB ein gewisser Zirkel im Wesen der Sache liegt.

Wir miissen also versuchen, zu einer klaren Fragestellung zu kommen.
Was ist ichst ein Gesellsch iel? Es fallen unter diesen Begriff
sehr viele, recht verschiedenartige Dmge von der Ronlette bis zum Schach.
vom Bakkarat bis zum Bridge liegen ganz

Arbeit tirebt,

8

melbegriffes ,,Geaeilmhnftaspml“ vor. Und —

¢in Eroignis, mit g iuferen Beding
o v e s || THEORY OF
Dt ey e GAMES
AND ECONOMIC
BEHAVIOR

aller dieser Dinge?

By JOHN VON NEUMANN, and
OSKAR MORGENSTERN

AwsiaLs or MATHEMATICS
Vol. 54, No. 2, September, 1051
NON-COOPERATIVE GAMES

Joux Nasa
(Received October 11, 1950)

Introduction

Von Ni and M have developed a very fruitful theory of
two-person gzero-sum games in their book Theory of Games and Economic Be-
havior. This book also contains a theory of n-person games of a type which
we would call cooperative. This theory is based on an analysis of the interrela-
tionships of the various coalitions which can be formed by the players of the
game.

Our theory, in contradistinction, is based on the absence of coalitions in that
it is assumed that each participant acts ind ly, without collab

tion or

NATURE VOL. 246 NOVEMBER 2 1973

The Logic of Animal Conflict

J. MAYNARD SMITH

School of Biological Scicnces, University of Sussex, Falmer, Sussex BN1 90G

G. R. PRICE

Galion Laboratory, University College London, 4 Stephenson Way, Londen NW1 2HE

Conflicts between animals of the same
species usually are of “limited war”
type, not causing serious injury. This
is often explained as due to group or
species selection for behaviour bene-
fiting the species rather than indi-
viduals, Game theory and computer

communication with any of the others.

The notion of an equilibrium point is the basic ingredient in our theory. This
notion yields a generalization of the concept of the solution of a two-person zero-
sum game. It turns out that the set of equilibrium points of a two-person zero-
sum game is simply the set of all pairs of opposing “good strategies.””

In the immediately following sections we shall define equilibrium points and
prove that a finite non-cooperative game always has at least one equilibrium
point. We shall also introduce the notions of solvability and strong solvability
of a non-cooperative game and prove a theorem on the geometrical structure of
the set of equilibrium points of a solvable

As an example of the application of

simplified three person poker game. J. theor. Biol. (1974) 47, 209-221

Formal Definitions

In this seetion we define the basic conc
terminology and notation. Important del
indicating the concept defined. The non-c
than explicit, below.

Finite Game:

School of Biological Sciences, University of Sussex, Falmer, Brighton,
Sussex BN1 9QG, England

(Received 10 January 1974)

‘The evolution of behaviour patterns used in animal conflicts is discussed,
using models based on the theory of games. The paper extends arguments
used by Maynard Smith & Price (1973) showing that ritualized behaviour
can evolve by individual selection. The concept of an evolutionarily stable
strategy, or ESS, is defined. Two types of ritualized contests are distin-
guished, “tournaments™ and “‘displays™; the latter, defined as contests
without physical contact in which victory goes to the contestant which
continues longer, are analyzed in detail. Three main conclusions are drawn.
The degree of persistence should be very variable, either between individ-
uals or for the same individual at d[ﬁ'm'eux times; 2 negative exponential
i times is

distribution of

The Theory of Games and the Evolution of Animal
Conflicts

J. MAYNARD SMITH

analyses show, however, that
a_ “limited war” strategy benefits indi-
vidual animals as well as the species.

I a typical combat between two male animals of the
same species, the winner gains mates, dominance rights,
desirable territory, or other advantages that will tend toward
transmitting its genes 1o future generations at higher fre-
quencies than the loser's penes. Consequently, one might
eapect that nawral sclection would develop mmmnn,
effective weapons and fighting styles for a “totul
strategy o&! battles between m:

Is should display

with constant intensity, independent of how much longer they will in fact
continue. An initial asymmetry in the conditions of a contest can be used

and ask what sirategy will be favoured under individual
selection, We first consider conflict in species possessing
offensive weapons capable of inflicting serious injury on
other members of the species. Then we consider conflict
in species where serious injury is impossible, so that victory
goes to the contestant who fights longest. For each madel,
We seek o strategy that will be stable under natural selec-
tion; that is, we seek an “evolutionarily stable strategy”
or ESS. The concept of an ESS is fundamental to our
argument; it has been derived in part from the theory of
games, and in par! from the work of MacArthur® and of
Hamils on the evolution of the sex ratio. Roughly,
an ESS is o strategy such that, if most of the members
of & population adopt if, there is no “mutant” strategy that
would give higher reproductive fitness.

A Computer Model

A main reason for using computer simulation was to
test whether it is possible even in theory for individual
selection to account for “limited war™ behaviour.

We consider a species that possesses offensive weapons
capable of inflicting serious injurics. We assume that there
are two categories of conflict tactics : “conventional” tactics,

which are unlikely to cawse scriows injury, ond
‘dangerous” taclics, O, which are likely to injure the
opponent scriously if they are employed for long. (Thus
in the snake example, wrestling involves tics and use
of fangs would be D tatics. In man s, C_tactics

JOHN MAYNARD SMITH

Evolution
and the
Theoryo

Games

L bl to settle it, even if it is i tothe f a more con-
PRINCETON UNIVERSITY PRESS flict if one were to take place.
1944
1. Introduction
Most models of evolution ascribe “fitnesses” to individuals and then work
out the way in which the frequencies of individuals of various kinds in the
nannlatinn chanea with tima Samatimac thace fitnaccse ara acenmad tn ha
Pl 4 ’/
.
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Evolutionary and Coevolutionary Games

B Evolutionary game dynamics: What are we interested in?

Hierarchy of game dynamics:

Game playing - each player
uses its strategy
plays scheduled coplayers
receives payoff PD;

Convert payoff to fitness  f, =1+ Jp, Intensity of selection o
(= influence of a single game on total)

Weak selection o <<1
Play again = no game dynamics
A players changes strategy - evolutionary game dynamics

Players change interaction network = coevolutionary game dynamics

L

ondr Renter on HTWK Concepts anq recent results in
“744*" Leipzig coevolutionary games



Evolutionary and Coevolutionary Games

B Evolutionary game dynamics: What are we interested in?

Hierarchy of asymptotic game dynamics

- Which players has how much payoff (or fithess) after a certain time?
lterated games, repeated games - Player deliberately selects strategy
(for instance Tit-for-Tat, Win-stay-Lose-switch)

- Classical evolutionary game theory, 1980s (John Maynard Smith, Robert
Axelrod, William D. Hamilton)

- How are strategies distributed over players after a certain time?

- What is the probability that all players settle on one strategy?

- Is there a fixation of strategy?

- Under what circumstance is the fixated strategy ‘Cooperation’?

- How to promote the emergence of ‘Cooperation’ or ‘Evolution of Cooperation’?
1990s and ongoing (Martin Nowak, Chris Hauert, Hisashi Ohtsuki)

- How does the structure of the interaction network interfere with fixation?
- Network structure is object to evolve = Current topic (and of the future...)

L
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Evolutionary and Coevolutionary Games

®F Evolutionary game dynamics

- Who-gets-what: Payoff matrix defining the payoff for each
strategy

- Who-plays-whom: Interaction network defining with whom
any player interacts (for more than 2 players)

- Who-plays-what: Strategy vector defining the strategy of
each player - Configuration of the game
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Evolutionary and Coevolutionary Games: Payoff matrix

C, D,

C. (R S
D \T P
B 2-player game

Classification of 2-strategy-2-player games with respect to game-theoretical difference

B 2-strategy game - 4D parameter space

How many Nash equilibria there are? What is the type of the Nash equilibria?
Nash equilibria (NE) and evolutionary stable strategies (ESS)

NE = best response to another player’s strategy (no other strategy yields higher
payoff
ESS = strategy that cannot be invaded by any alternative (yet initially rare) strategy

NE not necessarily equal ESS

L
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Evolutionary and Coevolutionary Games: Payoff matrix

B 2-strategy game - 4D parameter space Cf Df
C. (R S
D \T P
B 2-player game
Numerical values and order R,S.T, P)
yield particular examples of social dilemma
games
Snowdrift game (SD) (also chicken or T>R>8S>P
hawk-dove)
Prisoner’s dilemma game (PD) r'>R>P>35
Stag hunt game (SH) R>T>P>S
Harmony game (H) R>85>2T>P
renarkReter 'I‘"U’\;,i( Concepts and recent results in 12
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2-player games: Snowdrift game (also chicken or hawk-dove)
C, D,

C. (R~
K™

B 2-strategy game - 4D parameter space

B Snowdrift game (also chicken or hawk dove)

The game: A snowdrift blocks a road. Two drivers
are on opposite sides of the block. Each can either
start shovel away snow to clear the path or wait.
Highest reward: Let opponent do all work. Then:
Do it together. Then: Do it yourself. Last: Both do
nothing.

Order Of parameter T > R > S > P m;::;;:;:;gﬂﬁf)g792—1867), A mail coach in snow drift"

Nash equilibria: three polymorphic equilibria

—> either players choose opposite strategies (cooperate vs. defect, or
defect vs. cooperate) or

- randomly switch between cooperating and defecting

"’/

Hendrik Richter g < w 74 Concepts and recent results in
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2-player games: Prisoner’s dilemma game

C, D,

B 2-strategy game - 4D parameter space

Ci

R
o (AN

P Prisoner’s dilemma

The game: Two people are arrested. Prosecutor can charge
both with small crime but lacks evidence to convince both of
larger crimes. Deal to both: Betray the other and go free.
Highest reward: Betray, while the other does not. Then: Both
not betraying. Then: Both betraying. Last: Not betraying,
while the other does.

Image: llya Repin (1844-1930) ,Arrest of a propagandist”
www.imrussia.org

Order of parameter T>R>P>S

Nash equilibria: monomorphic - all players defect

PR AL
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2-player games: Stag hunt game (coordination game, trust dilemma)

B 2-strategy game - 4D parameter space CJ' Df
C. (R

JEE!

D. \T—P

B Stag hunt (coordination game or trust dilemma)

The game: (Jean-Jacques Rousseau) =
Two people go on a hunt. Each can hunt a stag (together) or I
a hare (each by himself). Highest reward: Hunt together a

stag. Then: Each hunts a hare. Last: Go stag hunting alone.

Image: Frans Snyders (1579-1657) ,Deer hunting®, www.wikiart.org

Order of parameter R>T>P> S

Nash equilibria: two pure Nash equilibria, bi-stable
—> either all players cooperate, or
—> all players defect

"’,
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2-player games: Harmony game

B 2-strategy game > 4D parameter space CJ' Df
C (R~
D \T—=P

F Harmony game

The game: No formal description as no conflict.

AR L

Order of parameter R>S>T > P

Image: Pieter Bruegel (1525-1569) ,Preparation of the flower beds*
www.pieter-bruegel-the-elder.org/

Nash equilibria: monomorphic - all players cooperate

v’z
¥

/’ .
Hendrik Richter HTWK Concepts and recent results in
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2-player games: General remark

B 2-strategy game - 4D parameter space Cf Df
C. (R S
PD prisoner's dilemma D \T P
SD snow drift (chicken, hawk-dove)
SH stag hunt
H harmony

Conflict between individual and group
(what is best for me vs. what is best for group)|

Typical 2x2 games (R,S,T, P)
More games with specific

Evolutionary games: More than 2 players

v’z
¥

/’ .
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Evolutionary and Coevolutionary Games: Payoff matrix

B Social dilemmas and Nash equmbrla CJ D Reward

C(R S Temptation C, JR P-D,
Sucker payoff
A\ R+D, P

D,\T P) punishment
o0 o O
® Always cooperate
Rescale
® Always defect [
O Mix both
O SH PD 1 H SH
0 1 2 -1 0 1
T D,
PD prisoner's dilemma Dilemma strength
SD snow drift (chicken, hawk-dove) D.=P-S risk-averting
SH stag hunt
H har?nony D, =T —R gamble intending
i remver H T'H'\;,K Concepts and recent results in 18
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Rescaling of payoff matrices (Wang et al., 2015)

C, D, ¢, D,
C (R S C P—(R-P)v
D \T P D, | R+ (R P)u P
I'—R P-S
U=—— y=—— R>P
R-P R-P
T'—R 1
—1< <1 sp
P _ S 0.5 .
(R, S,T,P) Different orders -0
Different social dilemmas 05
H SH
—1< <1 Traversing a 2D parameter space ' 05 a 0.5
\% with relevant dilemmas v
i | T'H'\;,K Concepts and recent results in 19
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Evolutionary and Coevolutionary Games: Payoff matrix

® Always cooperate

!

® Always defect

O Mix both

E

;
SD
0.5
= 0
-0.5 N
H SH [ )2
| 4
-1
-1 0.5 0 0.5 1
Vv
Fig. 4. Bquilibrium fraction of cooperators in Dy—Dy (upper panels) and D}—D), (lower pancls) di with direct reciprocity. The

Fixation properties do not Scale to R and P are (@ R=17,P=12, =1, P=0,and (c) R =10, P = 2. In all cases the probability of meeting each other in another round is w = 0.1.

Wang et al. (2015)

St em sz H < W K Concepts and recent results in
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Evolutionary and Coevolutionary Games

B Coevolutionary game dynamics

For payoff matrix, strategy for each player and interaction network fixed
—> payoff distribution always the same

Make the game dynamic: -> update strategies
(evolutionary game)
replication and replicator rules

- update network of interaction
(coevolutionary game)

Strategy updating: Intensively researched field in evolutionary games

Strategy updating: stochastic process with probabilities depending on
fitness (Moran process)

Network models and updating: evolutionary graph theory

AL
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Evolutionary and Coevolutionary Games

®F Evolutionary game dynamics

- Who-gets-what: Payoff matrix defining the payoff for each
strategy

- Who-plays-whom: Interaction network defining with whom
any player interacts (for more than 2 players)

- Who-plays-what: Strategy vector defining the strategy of
each player - Configuration of the game

PR AL
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Evolutionary and Coevolutionary Games: Interaction network

¥ Evolutionary graph theory

Population of N players: who-plays-whom (who is coplayer to whom)
- Network of interaction

Evolutionary graph theory (Lieberman et al.,2005)
Every player = vertex of a graph
Two players interacting - edge between the player vertices

Two Examples: N =4 players

all playing all others player 1 vs. (2&3); player 3 vs. (1&4)
(but no self-play) player 2 vs. (1&4); player 4 vs. (2&3)

Adjacency matrix Adjacency matrix

01 1 1 01 10

1 011 1 0 0 1

4, = 4, =
1 1 0 1 1 0 0 1
1 110 01 10
Complete network of interaction

rensrkRensr o M -i-'ﬁ,i’( Concepts and recent results in 03
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Evolutionary and Coevolutionary Games: Interaction network

B Evolutionary graph theory: graph-theoretical concepts and implications

Adjacency matrix Adjacency matrix
01 1 1 01 10
I 0 0 1
0 o0
I 1

[ N Ty

0 1
1 0
1 1

O = =

1
0
Degree of a vertex = number of edges = number of coplayers

Same degree for all vertices = regular graph = number of coplayers same
Adjacency matrix symmetric = undirected graph = players mutually interact
Main diagonal zeros = no self-edges = no self-play

Complete matrix = complete graph = well-mixed game

Structured matrix = regular (or any) graph = structured population

AL
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Evolutionary and Coevolutionary Games: Interaction network

B d-regular graphs on N vertices: computational models of interaction networks

Interaction network - interaction graph - instance of an Erdos-Rényi graph

Any d-regular graph on N vertices - interaction network with N players and
d coplayer

Any d-regular graph on N vertices 2 dN/2 edges - dN even

(&)
N=5, d=2 N=5, d=3

Numerical experiments with N even
Numerical experiments vary over N and d

AL
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Evolutionary and Coevolutionary Games: Interaction network

B d-regular graphs on N vertices: computational models of interaction networks

Recently, efficient algorithms to generate such graphs (Bayati et al.,2010)
Number of different 2-regular graphs by iteration

L2(N):(N—1)L2(N—1)+(N_z)(N_3) L(N-3) N2>3

Lz(o):1

L,(1)= L,(2) =0 L(8)=3
L,(6)=170

O ® er L,(10) = 286884

00 1 1 01 0 1 0110 L,(12) =34944085
1 010 1 00 1
4, = oo b 4, = 4, =
1 100 01 0 1 1 00 1 §
1 100 1 010 0110 L,(20)=1.4-10
"’,/,’ .
e rer s HT WK Concepts and recent results in o6
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Evolutionary and Coevolutionary Games: Interaction network

B d-regular graphs on N vertices: computational models of interaction networks
No formula known to calculate the number of d-regular graphs on N vertices

Asymptotic approximation for dN even and d = o(«/ﬁ), Wormald, 1999

1-d* &
12N

dN

(AN /2)122 -(d)”

(dN)! exp[ +0(d> /N)j

Ld(N):

Hugh number of different graphs for sufficient large d and N
L, = O(NN),d << N

- Numerical experiments may take into account only a tiny subset

AL
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Evolutionary and Coevolutionary Games: Interaction network

wmms o NOWaK & May, 1992

F Evolutionary graph theory: generalizes spatial games
Spatial games on a lattice grid: Coplayers are
spatial neighbors (edges overlapping)

@ player ()  coplayer

. 011 1001O0O0
Von Neumann neighborhood |, o o | o o | o
D @ B 11000100 1 - -
100011100 '
@ ® ©® 4=0@Do@o@®o®0| 4-regular graph over 9
@@ 001 1 10001 vertices
PO 0000 General: Specific 4-regular
01 0 01O0T1 01 .
00100111 o graphonN vertices
Moore neighborhood { }
4, =\a;5a;=1,a,=0 8-regular graph over 9
® o0 vertices
@ G Complete graph General: Specific 8-regular
@ ® - well-mixed game graph on N vertices
ek Riner M 1‘-";‘;’;’( Concepts and recent results in 08
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Evolutionary and Coevolutionary Games

®F Evolutionary game dynamics

- Who-gets-what: Payoff matrix defining the payoff for each
strategy

- Who-plays-whom: Interaction network defining with whom
any player interacts (for more than 2 players)

- Who-plays-what: Strategy vector defining the strategy of
each player - Configuration of the game

"’/

ondr Renter on B < w K Concepts anq recent results in
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Game Dynamics and Fixation Properties: Strategy vector

P Fundamental elements in evolution of evolutionary games

@ @ ® ® @ @
> >
Mutation Selection
O = there is o = growth is @
novelty not equal
- s .
e crvse HT VW 74 Concepts and recent results in 30
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Game Dynamics and Fixation Properties: Strategy vector

B 2 strategies, red and blue, one change of strategy once a time

O O ® O O @ @ @
-> > <->
O o O ® O O @ O
O O @ @
Fixation @ Fixation @
incti Extinction@
Extinction® Fixation: Reach one of the absorbing states of U
® ® a Markov chain O O
Two scenarios: o
O @  ° Change of strategy random and equal for all @
(Constant selection) o
) « Change of strategy random and depending
on fitness (frequency-dependent selection)
rensrkRensr o M -i-'&,i‘( Concepts and recent results in 31
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Game Dynamics and Fixation Properties: Strategy vector

P Fixation probabilities

) ) ) ® @ [ e @
yo e o e e ® o T e o
(] @ @ @
Fixation @ Fixation @
Extinction@® Extinction@
o ® @ @
® @
Constant selection: individual payoff (and individual fithess) only depends

on own strategy

1
Neutral evolution: fithess @ = fithess @ P = ﬁ
Fitness dependent evolution: fitness @ /=1 1-1/ f
fithess @ f =1 Piie =
1-1/ "
i remver H -i-'ﬁ,i‘( Concepts and recent results in 30
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Game Dynamics and Fixation Properties: Strategy vector

P Fixation probabilities

Yo,

Fixation @ ’ Fixation
Extinction@ Extinctio

o S

Frequency-dependent selection (Frequency dependence):
individual payoff (and individual fithess) depends on own strategy

AND

who the coplayers of the individual are = network of interaction

AND

the strategies of the coplayers - strategy vector - configuration

& rr7zs
Hendrik Richter e =
Hrwk Leipzig, FET.msk I T WV KK
-

>
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Game Dynamics and Fixation Properties: Strategy vector

® Frequency dependence and configurations LSl :>§ - :>§
' &

» Evolution acts on individuals (more precise on properties of individuals)
» Co-evolutionary games - players with the property strategies

« But: Game dynamics not understandable by the strategy of a player alone
* Need all strategies of all interacting players - frequency-dependence

« Configurations: Alternative to player-centered view
« Enumerates all choices that players have

N players, 2 strategies each T = (72'172'272'3,,,72']\])

¢=2"
T, € {CinDi}: {190}

L

ondr Renter on HTWK Concepts anq recent results in
“744*" Leipzig coevolutionary games

34



Configuration model

Strategies in a population on N players:

Game configuration
Describes strategies of all players
(= the game as a whole)

Example
N =4 r=2"=16
T = (721722%3@): (0110)

Players 1 & 4 defect
Players 2 & 3 cooperate

n=(mr,m,..7y)

7T & {Ci9Di}: {190}

Coplayer configuration

Describes strategies of the coplayers
(= the game from the perspective of
each player)

Forplayer 1 7, = (7[272'3%4 ) =(110)
For player2 7. = (7[172'372'4 ) =(110)

—> direct calculation of payoffs

& rr7zs
Hendrik Richter = =
Hrwk Leipzig FET.msk I T WV KK
-

>
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Configurations, local frequencies and payoff: Well-mixed

Local frequencies:

7. =(110) @' (110)=2/3 @’(110)=1/3

Player i - strategy 7 (cooperating)

pil(ﬂ-co):Rwl'l(ﬂco)+Swio(ﬂco) CJ DJ'
C (R §
Player i - strategy 0 (defecting) plr p

pzp(ﬂ-co) — Twz'l(ﬂco)+Pmio(7z-co)

Payoff depends on the frequency of strategies among coplayers

7., =(110) pl110)=(2R+S)/3  p’(110)=(2T + P)/3
7. =(100) p!(100)=(R+2S8)/3 p/(110)=(T +2P)/3
Well-mixed population - every player interacts with all other players (d=N-17)

pense Rt e H -i-'ﬁ,i’( Concepts and recent results in 36
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Example: N = 4 players, d = 3 coplayers (well-mixed)

CJ. Dj
C. (3 0
DZ(S 1
pi10)=p,(1110) .
pf(llO) = p,(0110)
p%(llO) = p,(1110)
p(110) = p,(1010)

j PD game

0
1 L3(4):1
1
1

)—Ap—AO)—A

)—lop—l)—l
Op_ap_A;_A

Complete network of

interaction
fi=1+6"p,
Intensity of selection
AL .
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Configurations, local frequencies and payoff: Structured

Structured population: Interaction network structures who-plays-whom

Local frequencies depend on adjacency matrix

<
Configuration (coplayers’ strategies for all players) © 9, D @ :
Interaction network (actually a coplayer ?)

1
0
1
0

Example: Player 1 + first row of adjacency matrix

z. =(110) 4°M)=(11) 4"@2)=(01) 4" 1) =(110)
7, 04,"1)=(110)o(011)=(010) @, (110)=1/2=a,(110)
7. 04,73)=(110)0(110)=(110) @,(110) = L@, (110)=0
Payoff depends on configuration + interaction network

p(110)=(R+S8)/2  p/(110)=(T+P)/2 A,(1) 4,2)
p(110)=R p (110)=T 4,03)
pense Rt e H -i-'ﬁ,i’( Concepts and recent results in 38
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Example: N = 4 players, d = 2 coplayers (structured)

0 0 1 1 01 0 1
0 0 1 1 1 01 0
A= 0 o ™= A=y o
1 100 1 010
1 |
01 1 0
1 001
L,(4)=3 AI:I 0 0 1
0110
"’/
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Properties of configuration model of (co)-evolutionary games

Local frequencies can be calculated for
« all configurations
 all players
« a given network of interaction (well-mixed - complete graph)
(structured - any connected graph)

Calculating local frequencies is bit-counting (Hamming weight) - linear time

complexity C D,
. . pi(r,)=Ra(z,)+ 5@/ (z,) C (R S
Payoff is rescaled local frequencies (. )=Ta!(z, )+ Pa’(x.) D\1 P

Payoff over varying payoff matrix = linear parametrization

Shows clearly frequency-dependence (Hamming weight of configuration)

Local frequencies: Configuration + interaction network

AL
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Game Dynamics and Fixation Properties: Strategy vector

B Game playing and updating strategies

Population of players I = (]1,[2, e ,[N)
Players choose a strategy 77, (k) = {Cl , D, } = { }
C, D,
Collect payoff C(R S
p\r p

Update strategy
depending on payoff
(replicator rules)

n.(k+1)={C. > D.,D, > C,}={1-0,0>1}

Q: Given a payoff matrix, replicator rule and an initial configuration of strategies,
what is the probability that all players end up with the same strategy?

For instance: 7(0) = (1 OOO---O) 77(0) = (1 111... 1)

fixation probability of cooperation

",/
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Game Dynamics and Fixation Properties: Strategy vector

F Replicator dynamics and replicator rules

Players may discard current strategy and adopt neighbor’s strategy

7.(k+1)={C. > D.,D, > C,}={1-0,0>1}
Decision should depend on fithess - success (or failure) of current strategy

Common schemes
» Death-Birth (DB)
» Birth-Death (BD)
» Pairwise comparison (PC)
« Imitation (IM)

L
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Death-birth (DB) and birth-death (BD) strategy updating

Death-birth (DB) Birth-death (BD)

Choose a player’s strategy to be replaced Choose a player’s strategy to replaced
at random with probability proportional to  another at random with probability

inverse of fitness (death) proportional to fitness (birth)

Choose the strategy that replaces at Choose the strategy that is replaced at
random amongst the remaining players random amongst the remaining players
(birth) (death)

>
4 B ®
® ®

O low fitness O high fitness

Assumption: Replacement network = interaction network
If not: Breaking symmetry between interaction and replacement (Ohtsuki et al., 2007)

AL
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Pairwise comparison (PC) and imitation (IM) strategy updating

Pairwise comparison (PC) Imitation (IM)

Choose a player’s strategy potentially to Choose a player’s strategy to replaced

be replaced uniformly at random uniformly at random

Choose a potential replacer among the

neighbors uniformly at random. Choose the strategy that replaces amongst
the neighboring players and the player

Replace (or preserve) strategy with itself proportional to fitness

probability p(ﬂz—)ﬂ's)—l_l_exp(f e

i >

L>fo | S>>
fs = fz
O compare fitness O high fitness
o rI/ .
o R R B < W K Concepts and recent results in a4
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Game Dynamics and Fixation Properties: Strategy vector

B Fixation probabilities and fixation times for single cooperators (defectors)

Fixation probability of cooperation 7(0) = (1 000...0) — 77(00) = (1 111... 1)
Pc

Fixation probability of defection 7(0) = (01 11.. 1) — 77(00) = (0000...0)
Pp

absorbing configurations

Generally: both depend on payoff matrix and are not equal but vary over replicator
rules and interaction networks

Fixation probability depending on 7(0) = (1 OOO...O)

initial player? — 71(0) = (1 111 1)
7(0)=(0100...0)
Well-mixed population (complete interaction network) - no
Structured populations - Not for a single cooperator (and defector) but any
other configuration

AL

e o eem e T W K Concepts anq recent results in 45
“744*" Leipzig coevolutionary games



Game Dynamics and Fixation Properties: Strategy vector

¥ Fixation probabilities and fixation times

average time for

Fixation time of cooperation: 72'(0) _ (1 OOO...O) —>7T(TC) _ (1 111, 1)
Tc

Fixation time of defection:
r 7(0)=(0111..1) —z(z,)=(0000...0)

Computational issues: vary (or average) over different start configurations
N
N
2™ configurations over {0,1} P — 0

Start configurations get rare - final configurations (absorbing configurations)
same

AL
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Fixation properties:

Example

Fixation properties
(probabilities and times) over
N and d

Conclusions about

PD zame S game

coevolutionary game N
dynamics: e
(a) (b)
Properties vary over interaction ) | |
networks |
No fixation for PD BD
u'\\
-.5\ o
!\E\'\I-I_ﬂh Ei
d L N d 1 N
red BD {c) (d)
green DB
& & "/,’ )
e e, SR HTWK Concepts and recent results in 47
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Game Dynamics and Fixation Properties: Strategy vector

F Fixation probabilities and fixation times: Bad news!

Calculating fixation probabilities and fixation times in structured populations

- Computational intractable in general settings
- Computational cost increases exponential with players and coplayers

BUT: If a game setting favors fixation of a strategy can be answered for

- Random change of strategy equal for all

- Random change of strategy depending on fitness for single cooperator
(and single defector)

- Weak selection and any configuration

AL
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Game Dynamics and Fixation Properties: Strategy vector

B Game setting favors fixation of a strategy

Setting: Payoff matrix Network of interaction Configuration
o e @ @ 1 2
¢, D, I><I | | i><z
@ G @ 3 @ 3
c, (RS (RN RN O 7 =(z,mymy.ry)
410011j47§1010147§1001 17927%3/* N
T R R U B U
D,' rp iiigg)’ LIOIOJ o 11 0

d-regular graph on N vertices (N players, d coplayers each)

Strategy C, is favored over D, =  pO- > Op
Tr-S§
R-P

Structure coefficient O = G(N, d,r, A,)
Q: When does the structure coefficient not depend on configuration and network?

o >

AL
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Game Dynamics and Fixation Properties: Strategy vector

B Generic structure coefficient, d-regular graph on N vertices
For a single cooperator (and a single defector), (Tarnita et al., 2009)

Well-mixed (d=N-1) o=
Cycle (d=2 _ 3N-8

ycle (d=2) o =38

o =4+
Structured (N>>d) — d-1
(and DB updating)
_ (d+1)N-4d
Any N and d O = (d-1)N d =
0.5 :
2 4 6 8 10 12 14
d
i remver H -i-'&,i‘( Concepts and recent results in 50
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Game Dynamics and Fixation Properties: Strategy vector

B Generic structure coefficient: example
Evolutionary games on a lattice: DB updating, a single cooperator at initial
configuration

Q: Is fixation of cooperation favored? C ; Dj
C. (R §
@ player (@  coplayer p \T P
l
_ 01 11007100
Von Neumann neighborhood |, o | o | o o | o
110001001
©® o0 100011100
@ 6 ® 4=0@o@o@®Do@®0| 4-regular graph over 9
001110001 :
vertices
@ © 1001000 1°1
0100107101
00100T1T1T1F0 C, D,
_ 29 T-S§ C R P—(R-P)v
__ (d+1)N-4d __ ) i
=y _27>R—P ~ Rescaled payoff matrix R+(R— Py P
e R ver LH] 'I‘"Wi( Concepts and recent results in 51
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Game Dynamics and Fixation Properties: Strategy vector

B Generic structure coefficient: example lattice N=9, d=4

Evolutionary games on a lattice: DB updating, a single cooperator at initial
configuration

Q: Is fixation of cooperation favored?

C, D,
- C R P—(R-P)v
- Rescaled payoff matrix D, | R+(R—Pu P
- 29
o={UDNAd 27 S b+
(d-1)N 27
__ (d+1)N-4d 5
) 1 N oo o=y _)5
U<—-v = 1
2 0.5
/ U<—-—v
0.5 "
o P Lt .
e crwse T WK Concepts and recent results in 59
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Structure coefficients: Any configuration

Structure coefficients can be defined for any configurations and any interaction
network described by regular graphs (Chen et al., 2016)

Structure coefficients vary over configurations with more than one cooperator (or
more than one defector)

Structure coefficients vary over interaction networks

Question of favored strategy more complicated to answer

Initial placement of cooperator to induce fixation properties becomes a design
problem

AL
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How to define landscapes for coevolutionary games?

F Fitness landscape view

Relationship between genotype, phenotype and fithess
(i.e. all solutions, candidate solutions, solution quality)

Geometric interpretation:

2D fitness landscape metaphor o
(valleys, peaks, ridges, plateaus Wi\
but also: lakes and flows)

f(x)

Beyond the metaphor: Computational Tool 7
Potentials for (evolutionary) dynamics

(i.e. driving forces behind evolutionary processes)

L
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How to define landscapes for coevolutionary games?

F Mathematical description of fithess landscape

A = (X N, f )
Configuration Neighborhood Fithess
space structure function
Unordered list of configurations l l
What is next to what
in configuration space? Quality information
/ Ordering the list for configuration space
i v
Produces locations Gives elevation (or height)
to locations
rensrkRensr o M -i-'ﬁ,i’( Concepts and recent results in 55
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How to define landscapes for coevolutionary games?

Configuration space for coevolutionary games:

LETTERS TO NATURE

At least two possibilities: Players and strategies

Players
O . "
Configuration: all players ggg%ﬂ;::g%ggg
S B
Neighbors: players and coplayers
Fitness: payoff (or derived quantities)

But: Payoff frequency-dependent

Changing network of interaction
- Changing neighborhood structure Nowak & May, 1992
Coevolutionary games:

- Dynamic fitness + changing neighborhood = hard

"’/
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How to define landscapes for coevolutionary games?

Configuration space for coevolutionary games:
At least two possibilities
Strategies

Configuration: strategy distribution of all players X=IL¢=2"

Neighbors: strategy distribution after one strategy updating (Hamming distance 1)
Fitness: payoff (or derived quantities), static and unique for a given network
Example: N =4 players, two strategies (C=1,D=0) > ¢/ =2" =16 elements

7 =(mmmm,)=(0101)  player 2&4 cooperate, 1&3 defect

player 1 changes strategy
T = (7[172'272'372'4 ) = (1 101)

AL
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Dynamic landscapes for coevolutionary games

From strategy landscapes to game landscapes

Strategy landscapes are building blocks for game landscapes
for a given strategy updating process

—> Take death and birth probabilities according to the transition probabilities for BD
and DB updating (Pattni et al, 2015)

- Decompose strategy landscape and summarize probabilities over the strategy
landscape

- Obtain game landscape for BD and DB updating process (strategy updating breaks
symmetry of the strategy landscapes) (Richter, 2017)

AL
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Summary and research questions

B Coevolutionary games complete by three entities

B Payoff matrix
B Strategy vector - configuration
¥ Interaction network

B Payoff matrix - universal scaling, Wang et al. (2015), convenient way to
study relevant game-theoretical settings in a 2D parameter space

B Strategy vector - configuration, Chen et al. (2016), describes evolutionary
game complete (all possible combinations of strategies)
BUT: computational issues ¢ = 2"(in principle, intractable for larger N)

How many of the N players are cooperators (or defectors)?
Configurations > Hamming weight of 7z 7z =(z,7,7,7,)=(0101) c(7)=hw(z)=2

N 4
How many of the ¢ =2* =16 have c(ry=hw(r)=2 > [C(ﬁ)j = (2) =6
(2 cooperators)?
i remver H -i-'&,i’( Concepts and recent results in 59
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Summary and research questions

B Strategy vector - configuration

How many of the / =2* =16 have  c¢(x)=hw(r)=2
(2 cooperators)?

N
General: Binomial coefficients (C(ﬂ)] Pascal triangle

1 cooperator - linear
2 cooperators > quadratic
3 cooperators - cubic

% cooperators (N large) - exponential c(r)

Computational complexity not for all configurations
Initial placement of cooperators = not generally intractable
Design: Optimal initial configuration - fixation - promotion of cooperation

L
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Summary and research questions

P Interaction network

Substantial amount of results for regular graphs (including complete graphs -
well-mixed case, and cycles)

also for special graphs structures (stars, comets) e
based on structure coefficients

But: How many different interaction networks there are?
Not answerable exactly even for d-regular graphs on N vertices

Asymptotic approximation: d= o(ﬁ) L, = O(NN ),d << N
Grows faster than configurations

Design: Optimal interaction network - fixation - promotion of cooperation

AL
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Summary and research questions

F Interaction network
Research question: Extend to general graph structure

Recent work, Allen et al. (2017), calculate fixation

properties for any network

Coalescences times (meeting times of random walks on the interaction graph)

- Structure coefficient for any graph and a single cooperator

—> Calculation in polynomial time

- Open questions: LETTER
- extend to any configuration (more than one cooperator) evutionary aynamies on any poputation structure
- extend to beyond weak selection, f, =1+dp,

PR AL
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Research directions

B Co-evolutionary game dynamics

B Conditions for obtaining certain fixation properties - how to promote
(or suppress) cooperation

F Beyond single cooperators (single defectors)
F Beyond weak selection

B Interplay between strategies (configurations) and interaction network

AL
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Thank you ' Questions ?

Hendrik Richter

HTWK Leipzig University of Applied Sciences
Leipzig, Germany

hendrik.richter@htwk-leipzig
http://www.eit.htwk-leipzig.de/~richter

Hendrik Richter
HTWK Leipzig, F EIT, MSR
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Evolutionary and Coevolutionary Games

F Updating strategy and network of interaction

Strategy updating: birth-death updating (BD)
death-birth updating (DB)

- No details here, but transition probabilities for strategies can be
calculated (Pattni et al.,2015)

Network of interaction updating: Assume that number of coplayers for
each player the same and constant

Network of interaction -> d-regular graph
Instances of network of interaction - instance of a random d-regular graph

AL
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Calculating BD and DB game landscapes

Strategy landscape for i-th | ! ; v Decomposed
player AH — (HaHd 9f): {ﬂ% }af — 1,2,...,2 |andscape
BD updating DB updating
i ﬁi ' /11'
K d/=1-5
A ;
; ' Replacement ;/%
1 & w. restrictions according | . w
di=—) to replacement matrix = 3"
NS, W, = | ’ Nf=1ZN:w
= R ij A .
1 1
=) =)

1 & .
l+expl — ) bd.
p(NlZI 14 zj

AL
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How to define landscapes for coevolutionary games?

F Mathematical description of fithess landscape

A = (X N, f )
Configuration Neighborhood Fithess
space structure function
Unordered list of configurations l l
What is next to what
in configuration space? Quality information
/ Ordering the list for configuration space
i v
Produces locations Gives elevation (or height)
to locations
rensrkRensr o M -i-'ﬁ,i’( Concepts and recent results in 68
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Landscape measures: How likely are evolutionary paths?

Evaluation of behavior and performance of
an evolutionary algorithm
- Landscape measures (= defining metrics)

Easy More difficult

PR AL
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Landscape measures: Game landscapes

Ruggedness: Correlation structure
How is it calculated?

1. Doing a random walk on the landscape and recording the heights.

h(t,k)=h(i(7), j(7),k),r=12,...,T.

2. Calculating the autocorrelation function with time lag 7;
T—t;

> (h(z,k) - h(k)) (h(z +1,,k) = h(k))
r(t, k) ="

h(k) = ZT:h(r,k)
> (h(z,k)— h(k))’

1
3. Taking the time average of the correlation length 4=~ (D) (1) =(r(Lk))

AL
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Landscape measures: Game landscapes

Information content: An entropic measure
How is it calculated?

1. Doing a random walk on the landscape and recording the heights.
h(z,k)=nh(i(z), j(7),k),r =12,...,T.

2. Coding fitness differences with sensitivity e

-1 if (t+1Lk)-h(t,k)<e

s (e,k)=3 0 if‘h(f+1,k)—h(r,k)‘£e S(e,k)=1s.5,...5;_
1 i i+ Lk)—h(r,k)>e

r

3. Calculating the probability of the occurrence of the pattern

S84 € {0190 -1,10,1-1,-10,-1 1} — {pop Po-15>P1o> P1-1P-10> p—ll}

4. Obtaining the information content
H(e,k)=— ) p,(ek)log, p,(e,k)

H,.=H(e) =0 <HIC (k)> a,be{:bl,o,l}
& & ”/,’ ]
e e, SR HTWK Concepts and recent results in -
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Landscape measures: Game landscapes

Modality: Number of (local) optima

Defining a neighborhood structure
Hamming distance
N neighbors

= (m7,7,m,)=(0101) > 7=(1101,0001,0111,0100)

Calculating the number of local optima by enumeration

L
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Landscape measures: Game landscapes

Ruggedness: Correlation structure

Degree of correlation between neighboring points in the landscape

Smooth landscape - similar fitness values = high correlation

Rugged landscape - dramatically different fithess values - low correlation

Standard procedure: Analyzing the correlation structure of a random walk
on the landscape

L
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Landscape measures: Game landscapes

Information content: An entropic measure

Amount of information required for describing the landscape

Accounts for diversity and distribution of landscape features as flat areas
and optima

Entropic measure of differences in the fitness value of neighboring points

Standard procedure: Analyzing the information structure of a random walk
on the landscape

AL
Hendrik Richter

e rer s HT WK Concepts and recent results in

74
Z25% " Leipzig coevolutionary games



Landscape measures: How likely are evolutionary paths?

Features contributing to problem hardness

- Number of optima
—> Distribution in search space
- Nature of the space between them

Another question: How do these features balance each other
in terms of problem hardness ?

Landscape measures

v

= Modality
- Ruggedness
- Information content

Number of (local) optima
Correlation structure
An entropic measure

v

v

Compressing complex landscape features in (hopefully meaningful) numbers

AL
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Example: N =

C, D,

C. (3 0

1

p W1

1

PD game
0

;—Lp—aO;—s

;—AO;—A;—A
o;—;;—;;—u

1
R
1

Ls (4) =1

Complete network of
interaction

fit =1+ 0 -payoff
Intensity of selection

4 players, d = 3 coplayers (static landscape)

AL
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Dynamic landscapes for coevolutionary games

Vary the network of interaction
Instance of random d-regular graphs produces instance of the strategy landscape

Instances interpreted as a series of landscapes - dynamic landscape

1L
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Example: N = 4 players, d = 2 coplayers (dynamic landscape)
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Structure and geometry of configuration space and fitness function

Fitness landscape

Fitness function

Search space

Constraints to limit the
General topology feasible search space

Immediate ‘geographic’ consequences: mountains and valleys - topology
Further consequences: lakes and flows —> evolutionary dynamics
—> evolutionary paths
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What is fitness landscape? The ideas of evolutionary paths

How likely are the paths?

Smooth
single rugged
peak multimodal
neutrality detour
From Poelwijk et al. 2007
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Landscape measures: How likely are evolutionary paths?

Generally: Fitness landscape
Geometrical object with features as

- Number
- Size

- Form

—> Scattering

In terms of an optimization problem

- Number of optima = Easy to measure

—> Distribution in search space o

> Nature of the space between them Rather difficult to measure
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