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Abstract

We study creating and breaking symmetry in digitally gen-
erated artificial-life-based visual art. Therefore, an artificial
swarm-based pattern-making system is used as a test bed.
The patterns are generated algorithmically by emulating the
collective feeding behavior of sand-bubbler crabs. Our fo-
cus is on analyzing concepts and templates for incorporating
symmetry and broken symmetry into the creation process of
bioinspired art. All four types of two-dimensional symmetry
defined by isometric maps are used to create images. Apart
from treating geometric symmetry, we also consider color as
an object of symmetric transformations. Color symmetry is
realized as a color permutation consistent with the isometric
maps. Therefore, color permutation groups have been de-
signed which utilize mappings on a color wheel.

Introduction
Different types of collective animal behavior occurring, for
instance, in swarms, flocks and colonies are particularly in-
teresting as they might show algorithmic ideas and templates
potentially helpful as an inspiration for artificial-life-based
art. Examples are ant- and ant-colony-inspired visual art
(Greenfield and Machado, 2015; Urbano, 2011), but also the
pattern-making of insects (Abbood et al., 2017), schools of
fishes and flocks of birds (Jacob et al, 2007; Romero and
Machado, 2008). Another recent example is sand-bubbler
patterns (Richter, 2018). These patterns are starting point for
an artistic interpretation of symmetry and symmetry break-
ing.

It seems to be curious that symmetry is an important prop-
erty not only of aesthetically pleasing objects, but also of
living organisms. Consequently, symmetry has been stud-
ied extensively in art and biology (and sciences in gen-
eral) (Thompson, 1942; Weyl, 1952; Shubnikov and Kopt-
sik, 1974; Grünbaum et al., 1986; Rosen, 1995; Conway et
al., 2008; Ball, 2009; Rosen, 2009; al-Rifaie et al., 2017;
Schattschneider, 2017). Consider the transformational po-
tential from biology to artificial life as a departure point for
artistic reflection (Whitelaw, 2004; Boden, 2015; Galanter,
2016). Thus, it would be desirable for the generating mech-
anisms of artificial-life-based art to address different aspects

and meanings of symmetry from both a conceptual and a
computational point of view. In this paper we take up this
idea and consider generating visual art with pre-designed
and tuneable degrees of symmetry. This is based on the fol-
lowing understanding of the essence of symmetry. Symme-
try implies that between the point sets forming the geometric
objects of an image, there are mappings preserving certain
properties of these point sets. These properties may be asso-
ciated with the spatial arrangement of the points within a set,
but also with the color of the points. In other words, parts
of a symmetric image resemble each other in some way or
another.

Although symmetry of two-dimensional geometric ob-
jects can be easily defined mathematically by isometric
maps, generating interesting symmetry in art is not trivial.
Art objects that strictly adhere to mathematical definitions
of symmetry may sometimes appear “overdesigned” from
a human point of perception. A related problem is that
symmetry in a strict mathematical sense is a binary con-
cept. Either there is symmetry and the objects in an image
obey an isometric map, or there is not. However, human
artists creating works that are praised for handling subtle ef-
fects of symmetry often experiment with symmetries that are
slightly (or even substantially) perturbed (Adanova and Tari,
2016; Bier, 2005; Molnar and Molar, 1986; Schattschneider,
2004). Such perturbations can be seen as symmetry break-
ing. From a rather abstract point of view, symmetry break-
ing is not meaning that the symmetry is completely absent
or that there is asymmetry, but rather that some aspects of
the symmetry are gone. Hence, symmetry breaking is a par-
ticularly powerful concept if it is seen as a process that plays
with our expectations of symmetry. Thus, symmetry break-
ing needs the context of us perceiving (or at least presum-
ing) an intact symmetry. Put differently, if before symme-
try breaking there was one kind of symmetry, then a broken
symmetry implies another kind of, but somehow “lesser”
symmetry.

Recently, an algorithmic framework has been proposed to
generate bioinspired visual art, which is based on the collec-
tive feeding behavior of sand-bubbler crabs (Richter, 2018).
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In nature, these patterns consist of sand-balls. In the images
inspired by nature, the patterns consist of pellets with a given
color (and possibly texture). This paper deals with employ-
ing artificial sand-bubbler patterns for studying algorithmic
generation and computational evaluation of symmetry and
symmetry breaking. We may generate symmetry by apply-
ing to the patterns any of the four types of isometric sym-
metry in two-dimensional objects (e.g. (Martin, 1982; Liu et
al., 2010)): (i) reflection, (ii) rotation, (iii) translation, and
(iv) glide reflection.

To have images with broken symmetry we remove (or ren-
der invisible) a fraction of the pellets building the patterns.
This interpretation is based on ideas proposed by Molnar and
Molar (1986) that symmetry breaking in visual objects can
be realized by moving or removing building blocks of the
visual representation. A main advantage of such an interpre-
tation is that by fixing a fraction of pellets and removing
the amount of pellets thus allowed at random, the degree of
symmetry breaking can be almost continuously scaled. If the
fraction is zero, symmetry is completely intact, any fraction
between zero and one breaks the symmetry to that degree,
and if the fraction is equal to one, symmetry is entirely ab-
sent. We use such a scaling to pre-design and tune degrees
of symmetry in sand-bubbler patterns.

As the sand-bubbler patterns have a given color, it appears
interesting to consider also color as a property that may un-
dergo symmetry transformations. This is known as color
symmetry (Schwarzenberger, 1984; Senecha, 1983, 1988).
There are some works on creating patterns using color sym-
metry, for instance Dunham (2010); Ouyang et al. (2012);
Thomas (2012), and a substantial amount of the visual art of
M. C. Escher uses color symmetry in some way or another
(Adanova and Tari, 2016; Coxeter, 1986; Schattschneider,
2004, 2017), but there is a (somehow surprising) lack of ap-
plications in the domain of artificial-life-based and genera-
tive art. The visual and numerical results reported in this
paper explicitly address the topic and deal with color sym-
metry in generative visual art. In visual art color symmetry is
a permutation of the patterns’ colors which is consistent with
the symmetry of the geometric objects of the image. It can
be realized by a mapping on a color wheel. Color symmetry
breaking, in turn, is an (intentional or random) perturbation
of the color permutation.

The paper is organized as follows. In the next section the
generation of sand-bubbler patterns is briefly recalled, see
also Richter (2018) for algorithmic details and biological
background. It is also discussed how generating and break-
ing symmetry can be achieved for these patterns. This is
shown for both the geometric symmetry of the patterns and
the color symmetry. Following this, computational experi-
ments and results are presented. Examples of sand-bubbler
art are presented and a computational symmetry measures is
tested to identify different aspects of symmetry. It is shown
that the computational symmetry measure is able to identify

different types of symmetry and symmetry breaking in the
images. Concluding remarks end the paper with a summary
of the findings and a discussion about future work.

Creating and breaking symmetry in
sand-bubbler patterns

Pattern symmetry
Sand-bubblers are tiny crabs living on tropical beaches.
They create remarkable patterns in the sand as part of their
collective feeding behavior. According to, and adopting, the
language of biological field work, these patterns consist of
sand balls, called pellets, that are placed along lines, called
trenches, which radiate from a center point, called burrow.
Recently, it was proposed to let this behavior inspire an al-
gorithmic framework for generating visual art. In this pa-
per we use this framework for experimenting with symmetry
and symmetry breaking, and briefly recall how the patterns
are generated; see Richter (2018) for a detailed discussion
about the biological background and how the feeding behav-
ior of sand-bubbler crabs can be captured by an algorithmic
description.

A sand-bubbler pattern can be described by the pellets
it contains. We give every pellet a location (xijk, yijk)T

in a two-dimensional (x, y)-plane. The index (ijk) iden-
tifies the k–th pellet (k = 1, 2, 3, . . . ,Kij) belonging to
the j–th trench (j = 1, 2, 3, . . . , Ji) of the i–th burrow
(i = 1, 2, 3, . . . , I). A pellet location can be computed by
(
xijk
yijk

)
=

(
xi + rk · cos (θj)
yi + rk · sin (θj)

)
+

( N (µijk, σ
2
ijk)

N (µijk, σ
2
ijk)

)
,

(1)
where (xi, yi)

T are the coordinates of the i–th burrow, θj is
the trench angle of the j–th trench, rk is the radial coordi-
nate of the k–th pellet, andN (µijk, σ

2
ijk) are realizations of

a random variable normally distributed with mean µijk and
variance σ2

ijk. For each burrow, we need to specify the max-
imum number of pellets Kij for a given i and j; the same
applies to the maximum number of trenches Ji.

For two-dimensional objects represented in an Euclidean
space, there are four types of isometric symmetry (e.g. Mar-
tin (1982); Liu et al. (2010)): (i) reflection, (ii) rotation,
(iii) translation, and (iv) glide reflection. For a sand-bubbler
pattern specified by Eq. (1), we define n an integer and
(∆x,∆y)T a vector of some real numbers, compute % =√
x2
ijk + y2

ijk, and obtain (left-right) reflection, rotation,
translation, and (up-down) glide reflection by

(xijk, yijk)T → (−xijk, yijk)T (2)

(xijk, yijk)T → (% cos (2π/n), % sin (2π/n))T (3)

(xijk, yijk)T → (xijk + ∆x, yijk + ∆y)T (4)

(xijk, yijk)T → (xijk + ∆x,−yijk)T , (5)

respectively. For reflection (2) and rotation (3), there are in-
variant points with the reflection axis x = 0 and the rotation
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center point (x, y)T = (0, 0)T , while for translation (4) and
glide reflection (5), no point of the pattern remains invariant.
Basically, the definitions (2)-(5) of two-dimensional isomet-
ric symmetry relate to points (xijk, yijk)T representing pel-
lets, but may also apply to point sets representing trenches,
burrows or whole patterns. In this paper we consider sym-
metry only to act on whole burrows. For designing the visual
effect that not all burrows share the same symmetry center
(for rotation) or symmetry line (for reflection and in some
sense also for glide reflection), it is possible to combine ro-
tation, reflection or glide reflection with a subsequent trans-
lation. For instance, rotation (3) followed by translation (4)
yields rotation center points at any (∆x,∆y)T .

As important as symmetry is for aesthetically pleasing ob-
jects, it is also known that subtle beauty in nature and art is
sometimes connected with symmetry that is a little less than
completely perfect. For instance, in nature symmetry surely
is a major organizational principle, but is rarely achieved in
a strict mathematical sense. The same applies to art. See, as
an example, the discussion about oriental carpets, embroi-
deries, tilings, and ornaments (Bier, 2001, 2005; Grünbaum
et al., 1986).

Such slight imperfections of symmetry fall into an in-
termediate state between complete symmetry and absence
from any symmetry and can be related to symmetry break-
ing. It has been suggested by Molnar and Molar (1986) that
in visual art symmetry breaking can be achieved by moving
and/or removing building blocks of the visual representa-
tion. The main intention of such a moving and/or remov-
ing of visual structures is to disturb the symmetry without
lastingly destroying it. This is in line with the observation
that symmetry breaking in textile art (for instance oriental
carpets and embroideries) can be created by intentionally or
randomly inserting irregularities and perturbations, resulting
in a (more or less close) approximation of symmetry (Bier,
2001, 2005).

From a computational point of view, and applied to the
sand-bubbler patterns as defined by Eq. (1), this interpreta-
tion of symmetry breaking has an interesting property. By
fixing a fraction of pellets and removing these pellets, the
degree of symmetry breaking can be almost continuously
scaled. Thus, symmetry and symmetry breaking can be pre-
designed and tuned, which is opening up settings for compu-
tational experiments. For generating images and evaluating
them using a computational measure, we employ and ana-
lyze a parameter governing symmetry and symmetry break-
ing: the symmetry breaking rate σbreak. It describes how
many of the pellets of a pattern are removed (or not visible)
due to symmetry breaking. If σbreak = 0, symmetry is com-
pletely intact, any value 0 < σbreak < 1 breaks the symme-
try to that degree, and if σbreak = 1, symmetry is entirely
absent. As there are in total IΣ =

∑I
i=1

∑Ji

j=1Kij pellets
belonging to a pattern, symmetry breaking takes away (or
renders invisible) dσbreakIΣe pellets.

Color symmetry
Using the mathematical concept of algebraic groups and un-
derstanding symmetry as a mapping that preserves certain
structures, the notion of symmetry can be expanded beyond
solely accounting for isometries of geometric aspects, for in-
stance towards color symmetry or dilation (Liu et al., 2010;
Weyl, 1952). For the sand-bubbler patterns specified by Eq.
(1), color symmetry appears to be particularly interesting.
The patterns found in nature on tropical beaches are typi-
cally monochromatic as they have the color of the sand they
are built from (and beaches with sand of different colors are
rather rare). In the artistic interpretation of sand-bubbler pat-
terns, it was proposed to color the pellets according to the
chronological order of the placement, or to give each bur-
row a specific color. In fact, color is not an intrinsic prop-
erty of such a pattern, but requires a design of its own. Any
coloring scheme thinkable could be applied. Thus, a colored
sand-bubbler pattern needs to specify the color cijk of each
pellet location (xijk, yijk)T . The color may vary over pel-
lets, or trenches, or burrows.

Color symmetry (Schwarzenberger, 1984; Senecha, 1983,
1988) of a pattern means that the coloring of the geomet-
ric objects building the pattern is consistent with the sym-
metry properties of these objects. Suppose there is a sym-
metry group of a pattern, for instance the isometric sym-
metries φ acting on a pellet according to (xijk, yijk)T →
φ(xijk, yijk)T as defined by Eqs. (2)-(5). Further assume
the pellet has the color cijk. Then color symmetry implies
that every φ is associated with a color permutation giving
the symmetric pellet the color θ(cijk). The mapping from
symmetry φ to color permutation θ is homomorphic. Put
differently, the symmetry properties of the geometric objects
define consistently the coloring of these objects. The colors
can be specified by a permutation group of colors, while the
color permutation can be realized by a mapping on a color
wheel. Based on this understanding, breaking color symme-
try of a pattern can be achieved similarly to the symmetry
breaking of the geometric aspects of patterns as described
above. We again set the number of pellets for which color
symmetry breaking applies by σbreak. A broken color sym-
metry means that for these pellets the color is not determined
by the color permutation of the “unbroken” pellets, but is
either produced by a different permutation or defined oth-
erwise. The computational experiments reported next also
deal with color symmetry. To distinguish between pattern
symmetry breaking and color symmetry breaking, we call
σbreak(p) the pattern symmetry breaking rate and σbreak(c)
the color symmetry breaking rate.

Computational experiments and results
Creating images with symmetry and broken
symmetry
For illustrating the effect of the different symmetries and
symmetry breaking schemes discussed in the section above,
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(a) (d)

(b) (e)

(c) (f)

Figure 1: Images with dichromatic symmetry generated by
reflection and translation with different symmetry breaking
rates. Upper panels (a), (d): σbreak(p) = 0, middle panels
(b), (e): σbreak(p) = 0.1, lower panels (c), (f): σbreak(p) =
0.3.

we consider some examples. We start with pattern symme-
try, see Fig. 1 showing dichromatic images. In principle, and
if the background has a color different from the pellets and
is not counted, displaying symmetry could also be possible
in monochromatic images, for instance black (or white) on a
white (or black) background. Nevertheless, from an artistic
as well as from a computational point of view, dichromatic
and polychromanic symmetry appears to be more interesting
as it opens up to experiment with color symmetry as well.

The upper left and right images (Fig. 1(a) and 1(d) show
full symmetry by reflection, while in the right image there
is additionally a translation. The other panels depict the
same image with different degrees of symmetry breaking. In
the left panels (Fig. 1(b) and 1(c) the symmetry breaking is

(a) RYB (b) RGB

Figure 2: A RYB (red-yellow-blue) (a) and a RGB (red-
green-blue) (b) color wheel with 12 slots, which are used to
build color permutation groups with degree up to 12

achieved by removing (or making invisible) pellets, while in
the right panels (Fig. 1(e) and 1(f) only the reflected pellets
undergo symmetry breaking and are additionally moved by
realizations of a random variable. We see that the symmetry
by reflection fades for the symmetry breaking rate getting
larger, up to the point where it cannot be recognized any-
more.

The images in Fig. 1 not only represent pattern symme-
try, but also a simple form of color symmetry. Color sym-
metry depends on the context of geometric symmetry of a
(possibly monochromatic) pattern to induce a permutation
of colors. This permutation of colors needs to be consis-
tent with the geometric symmetry insofar as some (or all)
symmetry operations change the colors, while some other
operations (or none) preserve color. For dichromatic images
as in Fig. 1 the color permutation group has degree 2, which
is to say there are only 2 colors. We see in the images that
the pattern symmetry leads to a color change if the symme-
try is by reflection and preserves the color if the symmetry
is by translation, which is a simple form of color symme-
try. To obtain a polychromatic color symmetry we need a
permutation group of degree N , with N the number of col-
ors involved. Such a color permutation can be realized by
a mapping on a color wheel with N slots, see the example
of a RYB and a RGB color wheel, both with 12 slots, in
Fig. 2. A broken color symmetry implies that not all pel-
lets experience the color permutation, but a fraction only.
In other words, we perturb the change-or-preserve-color ar-
rangement induced by the color permutation.

Fig. 3 shows such a color symmetry and also the results of
some experiments with color symmetry breaking. The color
permutation is realized using a RYB (red-yellow-blue) color
wheel (Itten, 1973; Rhyne, 2017), see Fig. 2(a). It is com-
monly called the standard artistic color wheel and defines
3 primary colors: red, yellow and blue. Mixing 2 of these
colors each gives the 3 secondary colors: orange (red and
yellow), purple (red and blue) and green (yellow and blue).
From these 3 primary and 3 secondary colors, another 6 ter-
tiary colors can be derived by mixing: vermilion (red and
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(a) (d)

(b) (e)

(c) (f)

Figure 3: Images with polychromatic symmetry using a
RYB color wheel generated by rotation with varying rota-
tion center points and different color symmetry breaking
rates. From upper left panel to lower right panel, (a)-(f):
σbreak(c) = (0, 0.15, 0.35, 0.55, 0.75, 0.95).

orange), amber (orange and yellow), chartreuse (yellow and
green), teal (green and blue), violet (blue and purple) and
magenta (purple and red). Fig. 3(a) shows an image with
full color symmetry. The pattern consists of 3 burrows that
each have a symmetric counterpart. Thus, there are 6 bur-
rows in total. The 3 burrows in the lower half of the image
are colored with the 3 primary colors according to the RYB
color wheel. The symmetric burrows in the upper half of
the image are colored with the secondary colors so that the
symmetry of the pattern yields the complementary color of
the RYB wheel, which is the color exactly opposite on the
wheel, see Fig. 2(a). Accordingly, red and green, yellow and
purple, and blue and orange are complementary colors. Us-
ing Cauchy’s two-line notation for describing the color per-

(a) (d)

(b) (e)

(c) (f)

Figure 4: Images with polychromatic symmetry using a
RYB and a RGB color wheel generated with different color
symmetry breaking rates. Left panels from top to bottom,
(a)-(c): σbreak(c) = (0, 0.25, 0.75), right panels top to bot-
tom (d)-(f): σbreak(c) = (0, 0.50, 0.95).

mutation group, we can write θ =
(
r y b
g p o

)
to express this

color symmetry. We now break the color symmetry. There-
fore, a fraction of pellets is selected at random with the sym-
metry breaking rate σbreak(c) and colored with tertiary col-
ors according to the RYB wheel. In other words, we break
the color symmetry between red and green by perturbing red
with chartreuse and green with magenta, and the color sym-
metry between yellow and purple by perturbing with teal and
vermilion, and so on. In some sense, this example of color
symmetry breaking finally yields another full symmetry for
σbreak(c) = 1, for which there is another color permutation
group, θ′ = ( ch te vi

ma ve am ) in two-line notation. The results
shown in Fig. 3(b)-(f) are the intermediate steps between
two unbroken color symmetries. The color symmetry break-
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ing shown in the panels are specified by each color element
of θ perturbing the corresponding color element of θ′, and
vice versa.

The next experiment involves a RGB (red-green-blue)
color wheel, which is based on the light model of color
and commonly finds usage in computer graphics (Rhyne,
2017; Shevell, 2003), see Fig. 2(b). Although roughly the
RGB color wheel covers the same color spectrum as the
RYB color wheel, the colors are distributed differently on
the wheel. Particularly, the complementary colors (which
are placed opposite on the color wheel) are different. In ad-
dition, the warmer colors are spread further around on the
RYB wheel, which gives the RGB wheel a somewhat cooler
appearance. This gives rise to another color symmetry, see
Fig. 4. The patterns are obtained by rotation and glide re-
flection. Fig. 4(a) shows a pattern colored by a RGB wheel.
In Fig. 4(b)-(c) there is a broken color symmetry as for the
symmetric pattern in the right half of the image fractions of
pellets are colored in cyan. In Fig. 4(d)-(f)) the complete
pattern is mapped in two fractions from a RYB color wheel
onto a RGB color wheel. This means that the color symme-
try is broken by perturbing the color of the RYB slots with
the color of the RGB slots for each slot with the same po-
sition on the color wheel according to Fig. 2. For instance,
green perturbs yellow, or cyan perturbs green, and so on.
According to the distribution of warm colors on the color
wheels, the lower image should appear somewhat cooler
than the upper image. Looking at Fig. 4(d)-(f)), it is in the
eye of the beholder, of course, to appreciate the effect.

Analysis by a symmetry measure

A further aim of this paper is to analyze how a computa-
tional metric may identify symmetry and symmetry break-
ing. As symmetry implies that parts of the image in some
ways resemble each other, the main algorithmic approach to
symmetry evaluation works by dividing the image and ana-
lyzing the parts. One method is to define axis along the diag-
onals of the image (for instance the horizontal, vertical, main
and secondary diagonal) and comparing the sections on op-
posing sides of the axis (Gartus and Leder, 2017; Liu et al.,
2010). Another approach is to partition the image into rect-
angles of equal size and comparing them. This method has
been proposed and studied by den Heijen and Eiben (2012);
den Heijen (2015) and involves to partition the image into 4
areas. We apply this method here and extended it by consid-
ering a finer partitioning into 16 quadrants.

We compare the areas by evaluating the differences in in-
tensity for each RGB pixel. In the experiments, we con-
sider the images to have 256 × 256 pixels. The intensity
In(i, j) of a pixel (ij) belonging to an area An is obtained
as the average of its red (R), green (G) and blue (B) value:
In(i, j) = (R(i, j) + G(i, j) + B(i, j))/3. Thus, the simi-
larity between a pixel (i, j) belonging to the area An and a

A31

A11

A32

A12

A22A21

A41 A42 A43 A44

A13 A14

A23 A24

A33 A34

1

Figure 5: Calculating of the symmetry measure

pixel (i, j) belonging to the area Am is

sim(Ani,j , Ami,j ) =

{
1 if |In(i, j)− Im(i, j)| < α,
0 otherwise

with α a difference threshold. In the experiments, there is
α = 0.05 (and 0 ≤ In ≤ 1). For similarity of whole areas
we average over all pixels:

sim(An, Am) =
1

IJ
I∑

i=1

J∑

j=1

sim(Ani,j
, Ami,j

),

where I and J are the number of pixels in the (x, y)-plane,
with I = J = 256 in the experiments reported here. We
define a left area by Al = A11 ∪A21 ∪A31 ∪A41, a middle
left by Am l = A12 ∪ A22 ∪ A32 ∪ A42, a middle right by
Am r = A13 ∪ A23 ∪ A33 ∪ A43 and a right area by Ar =
A14 ∪ A24 ∪ A34 ∪ A44, see Fig. 5. The same is done like-
wise for vertical areas: top, middle top, middle bottom and
bottom. For the horizontal symmetry symh we calculate the
average similarity between the left and the areas to the right

symh = (sim(Al, Ar)+sim(Al, Am l)+sim(Al, Am r))/3,

while for the vertical symmetry symv , we take like-
wise into account the averaged similarities between the
top and the areas below: sim(At, Ab), sim(At, Am t)
and sim(At, Am b). The comparison of areas by symh

and symv can be seen as a generalized form of relat-
ing left-to-right and top-to-bottom. It does not presume
a symmetry axis along the horizontal and vertical cen-
tral axis as for instance would have been imposed by
(sim(Al, Ar) + sim(Am l, Am r))/2 or (sim(At, Ab) +
sim(Am t, Am b))/2. However, by this comparison of ar-
eas a bias is introduced towards the left and top of the im-
age. Additional experiments (not depicted in the figures)
have shown that the results are qualitatively the same if the
bias is towards the right or the bottom. This appears to be
plausible as the images have no natural orientation.

The symmetry measure SYM taking into account a par-
tition into 16 areas of the image as shown in Fig. 5 is the
average over the two symmetries:

SYM = (symh + symv)/2. (6)
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Figure 6: The symmetry measure SYM as a function of the
symmetry breaking rates σbreak for both symmetry breaking
of pattern and color symmetry breaking

Fig. 6 shows the results of computational experiments with
symmetry and symmetry breaking in digitally generated
artificial-life-based visual art. The symmetry measure SYM
is shown as a function of the symmetry breaking rates σbreak
for symmetry breaking of both pattern and color. The results
are for 21 equidistant values of the symmetry breaking rate
σbreak with 0 ≤ σbreak ≤ 1.

For each value of σbreak, 2000 images with patterns were
generated according to the algorithmic framework described
above. Each image is different as some of the algorithm’s
parameters depend on realizations of a random process. For
analyzing the effect of symmetry breaking the color of each
pellet is assigned at random. This is done by coloring each
pellet with a realization of a random variable uniformly dis-
tributed on the RGB color space. Symmetry breaking of the
pattern is done by pellets being removed (or made invisi-
ble). Looking at the results, we see that for pattern symmetry
(Fig. 6(a)) the symmetry measures fall almost linearly with
the symmetry breaking rate σbreak(p). For σbreak(p) = 0,
where the symmetry is completely intact, we have the high-
est values of SYM. The values fall for σbreak(p) getting
larger and are smallest for σbreak(p) = 1, where symmetry
generated by the isometric maps is completely gone. How-
ever, we also see that the values of the symmetry measures
for σbreak(p) = 1 are not really small. We find SYM ≈ 0.9.
This can be explained by even a single sand-bubbler pat-
tern displaying a considerable degree of symmetry. Look,
for instance, at the pattern on the left-hand side of Fig. 1(a).
Here, the trenches of the pattern form hands around the cen-
ter point for more than a semicircle. Thus, there is symme-
try in itself, and the symmetry measure SYM accounts for
it. However, generating additional symmetry by the isomet-
ric maps (2)-(5) increases the value of the symmetry mea-
sure even more, which shows its ability to identify different
shades of symmetry. A further result is that the symmetry
measure enables differentiating between the different types
of symmetry, with reflection (2) giving slightly smaller val-
ues than rotation (3), transition (4) and glide reflection (5).

The curves for color symmetry breaking are shown in Fig.
6(b). Symmetry breaking of colors is done by shifting the
colors of the selected pellets randomly through the RGB
color space. The results show that a higher degree of sym-
metry breaking (that is, a higher percentage of pellets that
change their color) does not give very different values of the
symmetry measures. In fact, SYM slightly drifts but has es-
sentially the same value for all 0 ≤ σbreak(c) ≤ 1. This is
a consequence of how the symmetry measure is calculated.
For a given collection of pellets it accounts for differences in
the spatial distribution of their average RGB values. Thus, a
random shift through the RGB color space does not system-
atically alter intensity. Such an alteration can be achieved
if breaking the color symmetry has a bias towards one of
the RGB components. Experiments indeed show this to be
the case. However, such a bias is completely arbitrary and
does not make the symmetry measure truly able to quantify
color symmetry breaking. Finally, it can be observed that for
color symmetry breaking (as for pattern symmetry breaking)
SYM allows to differentiate between types of symmetry.

It may finally be interesting to note that a coarser or finer
grid of areas deteriorates the results. Additional experiments
with 4 and 64 areas (not shown in figures due to brevity)
have shown that the curves for the isometric maps (2)-(5)
lump together. This immediately suggests the conjecture
that there is a grid optimal for differentiating between types
of symmetry, which may depend on the granularity of the
pellets. This appears understandable as the pellets have a
finite size, which is relative to the size of the image. The
pellets have no structure on every scale as for instance have
fractals, which is the main reason for fractal dimensions not
being useful for evaluating the images considered in this pa-
per.

Concluding remarks
In this paper symmetry and symmetry breaking in digi-
tally generated artificial-life-based visual art is discussed. Its
main focus is on concepts and templates for incorporating
symmetry and broken symmetry into the creation process
of bioinspired art. Using the example of sand-bubbler pat-
terns as a test bed, all four types of isometric symmetry in
two-dimensional space are employed. In addition, also color
symmetry is considered and realized as a color permutation
consistent with the isometric maps. Therefore, color permu-
tation groups have been designed which utilize mappings on
a color wheel.

In more abstract terms symmetry has been described as
“immunity to a possible change,” (Rosen, 1995). Such an
understanding, however, may also suggest the interpretation
that symmetry implies redundancy (or even the absence of
novelty). This has been the main motivation to explore inter-
mediate states between complete symmetry in a mathemati-
cal sense and no symmetry at all, which have been treated as
symmetry breaking. The artistic interpretation proposed in
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this paper is that broken symmetry means that certain parts
(or aspects) of symmetry become invisible as a result of the
symmetry breaking process. It is also shown that a compu-
tational symmetry measure is able to identify different types
of symmetry and symmetry breaking in the images.

The visual and analytic results presented in the paper only
cover a small subset of possible designs. Thus, future work
could focus on exploring the design space to a larger extent.
For instance, the color permutations discussed in connection
with color symmetry only considered hue, but could also in-
clude saturation or lightness. Furthermore, whole patterns
could be used as a motif or building block to create more
complex patterns, for instance by combining or repeating
isometric maps. Thus, by employing the concept of wall-
paper or frieze groups (Coxeter, 1986; Conway et al., 2008;
Thomas, 2012) images could be produced that broaden the
spatial scope.
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